1,134
Views
38
CrossRef citations to date
0
Altmetric
Brief Report

Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy

, &
Pages 410-415 | Received 15 Oct 2014, Accepted 27 Jan 2015, Published online: 02 Apr 2015

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (4)

Christa M. Diot, Robyn L. Thomas, Liliane Raess, James G. Wrightson & Elizabeth G. Condliffe. (2023) Robotic lower extremity exoskeleton use in a non-ambulatory child with cerebral palsy: a case study. Disability and Rehabilitation: Assistive Technology 18:5, pages 497-501.
Read now
Mariana Volpini, Mariana Aquino, Ana Carolina Holanda, Elizabeth Emygdio & Janaine Polese. (2022) Clinical effects of assisted robotic gait training in walking distance, speed, and functionality are maintained over the long term in individuals with cerebral palsy: a systematic review and meta-analysis. Disability and Rehabilitation 44:19, pages 5418-5428.
Read now
Nihan Abidin, Ece Ünlü Akyüz, Damla Cankurtaran, Özgür Zeliha Karaahmet & Nihal Tezel. (2022) The effect of robotic rehabilitation on posture and trunk control in non-ambulatory cerebral palsy. Assistive Technology 0:0, pages 1-7.
Read now
Luigi Piccinini, Veronica Cimolin, Fabio Storm, Gabriella Di Girolamo, Emilia Biffi, Manuela Galli & Claudia Condoluci. (2022) Quantification of the effects of robotic-assisted gait training on upper and lower body strategy during gait in diplegic children with Cerebral Palsy using summary parameters. Computer Methods in Biomechanics and Biomedical Engineering 25:2, pages 140-147.
Read now

Articles from other publishers (34)

Ameer Helmi, Tze-Hsuan Wang, Samuel W. Logan & Naomi T. Fitter. (2023) Harnessing the Power of Movement: A Body-Weight Support System & Assistive Robot Case Study. Harnessing the Power of Movement: A Body-Weight Support System & Assistive Robot Case Study.
Florian van Dellen, Tabea Aurich-Schuler, Nikolas Hesse & Rob Labruyère. (2023) Clustering trunk movements of children and adolescents with neurological gait disorders undergoing robot-assisted gait therapy: the functional ability determines if actuated pelvis movements are clinically useful. Journal of NeuroEngineering and Rehabilitation 20:1.
Crossref
Sabrina Gröble, Hubertus J. A. van Hedel, Jeffrey W. Keller & Corinne Ammann-Reiffer. (2023) Differences in gait parameters when crossing real versus projected everyday life obstacles in healthy children and adolescents. Scientific Reports 13:1.
Crossref
Enrico Castelli, Elena Beretta, Antonio De Tanti, Francesca Arduini, Emilia Biffi, Alessandra Colazza, Chiara Di Pede, Andrea Guzzetta, Ludovica Lucarini, Irene Maghini, Martina Mandalà, Maurizio Nespoli, Claudia Pavarelli, Francesca Policastro, Marco Polverelli, Andrea Rossi, Giuseppina Sgandurra, Paolo Boldrini, Donatella Bonaiuti, Stefano Mazzoleni, Federico Posteraro, Paolo Benanti, Francesco Draicchio, Vincenzo Falabella, Silvia Galeri, Francesca Gimigliano, Mauro Grigioni, Stefano Mazzon, Franco Molteni, Giovanni Morone, Maurizio Petrarca, Alessandro Picelli, Michele Senatore, Giuseppe Turchetti & Donatella Saviola. (2022) Robot-assisted rehabilitation for children with neurological disabilities: Results of the Italian consensus conference CICERONE. NeuroRehabilitation 51:4, pages 665-679.
Crossref
Domenico M. Romeo, Ilaria Venezia, Margherita De Biase, Francesca Sini, Chiara Velli, Eugenio Mercuri & Claudia Brogna. (2022) The Use of the 6MWT for Rehabilitation in Children with Cerebral Palsy: A Narrative Review. Journal of Personalized Medicine 13:1, pages 28.
Crossref
Florian van Dellen & Rob Labruyère. (2022) Settings matter: a scoping review on parameters in robot-assisted gait therapy identifies the importance of reporting standards. Journal of NeuroEngineering and Rehabilitation 19:1.
Crossref
Rosaria De Luca, Mirjam Bonanno, Carmela Settimo, Rosalia Muratore & Rocco Salvatore Calabrò. (2022) Improvement of Gait after Robotic-Assisted Training in Children with Cerebral Palsy: Are We Heading in the Right Direction?. Medical Sciences 10:4, pages 59.
Crossref
Tingting Ma, Qi Zhang, Tiantian Zhou, Yanqing Zhang, Yan He, Sijia Li & Qianjin Liu. (2022) Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury. NeuroRehabilitation, pages 1-10.
Crossref
Annette Wulf & Constanze Reutlinger. (2022) Rehabilitation bei Menschen mit BehinderungenRehabilitation for people with disabilities. Zeitschrift für Epileptologie 35:3, pages 230-234.
Crossref
Benjamin C. Conner, Nushka M. Remec & Zachary F. Lerner. (2022) Is robotic gait training effective for individuals with cerebral palsy? A systematic review and meta-analysis of randomized controlled trials. Clinical Rehabilitation 36:7, pages 873-882.
Crossref
Burak Yaşar, Emine Atıcı, Derya Azim Razaei & Tülay Çevik Saldıran. (2021) Effectiveness of Robot-Assisted Gait Training on Functional Skills in Children with Cerebral Palsy. Journal of Pediatric Neurology 20:03, pages 164-170.
Crossref
Yosra Cherni & Clara Ziane. (2022) A Narrative Review on Robotic-Assisted Gait Training in Children and Adolescents with Cerebral Palsy: Training Parameters, Choice of Settings, and Perspectives. Disabilities 2:2, pages 293-303.
Crossref
Hubertus J. A. van Hedel, Tabea Aurich Schuler & Jan Lieber. 2022. Neurorehabilitation Technology. Neurorehabilitation Technology 289 318 .
Psiche Giannoni. 2022. Cerebral Palsy. Cerebral Palsy 461 511 .
Faustyna Manikowska, Sabina Brazevic, Anna Krzyżańska & Marek Jóźwiak. (2021) Effects of Robot-Assisted Therapy on Gait Parameters in Pediatric Patients With Spastic Cerebral Palsy. Frontiers in Neurology 12.
Crossref
CHANHEE PARK & SUNG JOSHUA H. YOU. (2021) VALIDITY AND TEST–RETEST RELIABILITY OF AN INTELLIGENT ROBOTIC SHOULDER JOINT KINEMATICS SYSTEM FOR REHABILITATION. Journal of Mechanics in Medicine and Biology 21:10.
Crossref
Faustyna Manikowska, Anna Krzyżańska, Paweł Chmara, Brian Po-Jung Chen & Marek Jóźwiak. (2021) Baseline Gross Motor Function Affects the Outcome of Robot-Assisted Therapy in Ambulatory Individuals with Spastic Cerebral Palsy. Brain Sciences 11:12, pages 1563.
Crossref
Carlos Cumplido, Elena Delgado, Jaime Ramos, Gonzalo Puyuelo, Elena Garcés, Marie André Destarac, Alberto Plaza, Mar Hernández, Alba Gutiérrez & Elena García. (2021) Gait-assisted exoskeletons for children with cerebral palsy or spinal muscular atrophy: A systematic review. NeuroRehabilitation 49:3, pages 333-348.
Crossref
Dayna Pool, Jane Valentine, Nicholas F Taylor, Natasha Bear & Catherine Elliott. (2020) Locomotor and robotic assistive gait training for children with cerebral palsy. Developmental Medicine & Child Neurology 63:3, pages 328-335.
Crossref
Maurizio Petrarca, Flaminia Frascarelli, Sacha Carniel, Alessandra Colazza, Silvia Minosse, Emanuela Tavernese & Enrico Castelli. (2020) Robotic-assisted locomotor treadmill therapy does not change gait pattern in children with cerebral palsy. International Journal of Rehabilitation Research 44:1, pages 69-76.
Crossref
Hsiu-Ching Chiu, Louise Ada & Theofani A Bania. (2020) Mechanically assisted walking training for walking, participation, and quality of life in children with cerebral palsy. Cochrane Database of Systematic Reviews 2020:11.
Crossref
Yosra Cherni, Laurent Ballaz, Josiane Lemaire, Fabien Dal Maso & Mickael Begon. (2020) Effect of low dose robotic-gait training on walking capacity in children and adolescents with cerebral palsy. Neurophysiologie Clinique 50:6, pages 507-519.
Crossref
Li Hua Jin, Shin-seung Yang, Ja Young Choi & Min Kyun Sohn. (2020) The Effect of Robot-Assisted Gait Training on Locomotor Function and Functional Capability for Daily Activities in Children with Cerebral Palsy: A Single-Blinded, Randomized Cross-Over Trial. Brain Sciences 10:11, pages 801.
Crossref
Hamza Sucuoglu. (2020) Effects of robot-assisted gait training alongside conventional therapy on the development of walking in children with cerebral palsy. Journal of Pediatric Rehabilitation Medicine 13:2, pages 127-135.
Crossref
Antonio Celesti, Aimé Lay-Ekuakille, Jiafu Wan, Maria Fazio, Fabrizio Celesti, Agata Romano, Placido Bramanti & Massimo Villari. (2020) Information management in IoT cloud-based tele-rehabilitation as a service for smart cities: Comparison of NoSQL approaches. Measurement 151, pages 107218.
Crossref
Elena Beretta, Fabio Alexander Storm, Sandra Strazzer, Flaminia Frascarelli, Maurizio Petrarca, Alessandra Colazza, Giampietro Cordone, Emilia Biffi, Roberta Morganti, Cristina Maghini, Luigi Piccinini, Gianluigi Reni & Enrico Castelli. (2020) Effect of Robot-Assisted Gait Training in a Large Population of Children With Motor Impairment Due to Cerebral Palsy or Acquired Brain Injury. Archives of Physical Medicine and Rehabilitation 101:1, pages 106-112.
Crossref
Hubertus J. A. van Hedel & Andreas Meyer-Heim. 2020. Cerebral Palsy. Cerebral Palsy 2797 2816 .
Helen Hartley, Elizabeth Cassidy, Lisa Bunn, Ram Kumar, Barry Pizer, Steven Lane & Bernie Carter. (2019) Exercise and Physical Therapy Interventions for Children with Ataxia: A Systematic Review. The Cerebellum 18:5, pages 951-968.
Crossref
Hubertus J. A. van Hedel & Andreas Meyer-Heim. 2019. Cerebral Palsy. Cerebral Palsy 1 20 .
Elena Beretta, Erika Molteni, Emilia Biffi, Roberta Morganti, Paolo Avantaggiato & Sandra Strazzer. (2018) Robotically-driven orthoses exert proximal-to-distal differential recovery on the lower limbs in children with hemiplegia, early after acquired brain injury. European Journal of Paediatric Neurology 22:4, pages 652-661.
Crossref
Sophie Lefmann, Remo Russo & Susan Hillier. (2017) The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review. Journal of NeuroEngineering and Rehabilitation 14:1.
Crossref
J. Kang, D. Martelli, V. Vashista, I. Martinez-HernandezH. Kim & S. K. Agrawal. (2017) Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Science Robotics 2:8.
Crossref
Payal GandhiKatherine ChanMary C. VerrierMaureen PakoshKristin E. Musselman. (2017) Training to Improve Walking after Pediatric Spinal Cord Injury: A Systematic Review of Parameters and Walking Outcomes. Journal of Neurotrauma 34:9, pages 1713-1725.
Crossref
Hubertus J. A. van Hedel & Tabea Aurich. 2016. Neurorehabilitation Technology. Neurorehabilitation Technology 283 308 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.