432
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Comparison of nerve conduction velocity distribution methods by cold exposure and ischemia

, &
Pages 13-22 | Received 28 Feb 2020, Accepted 01 Jul 2020, Published online: 23 Jul 2020
 

Abstract

Purpose

Non-invasive estimation of the conduction velocity distribution (CVD) of a peripheral nerve has the potential to both improve clinical diagnoses of pathology and to observe the progress of the disease or the efficacy of treatments. Comparisons were made of the performance of three non-invasive CVD estimation methods proposed by independent research groups on peripheral nerve bundles under different conditions.

Methods

The first method (Cummins) uses a nerve compound action potential (CAP) with temporal dispersion and a mathematical single fiber action potential (SFAP). The second method (Barker) uses two CAPs and a non-mathematical SFAP waveform. The third method (Hirose) uses two CAPs recorded from distal and proximal sites. The Cummins and Barker methods have iterative solutions in the time domain while the Hirose method is a deconvolution estimator in the frequency domain. In order to compare these methods, we used cold exposure to affect primarily motor fibers and ischemia to affect primarily sensory fibers on rat caudal nerve bundles.

Results

The Cummins method is sensitive to changes in motor and sensory fiber percentages in CVD if it is used with the volume conductor model. The Barker and Hirose methods are sensitive to motor fiber percentages in CVD but they cannot detect changes in sensory fiber percentages accurately.

Conclusions

Estimation of the CVD using a priori SFAP created with a volume conductor model can non-invasively supply accurate and precise information about fiber groups in a peripheral nerve bundle.

Disclosure statement

No conflicts of interest to be declared.

Additional information

Funding

This study was funded by Akdeniz University Scientific Research Unit (Project No: 2013.02.0122.014).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.