618
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila

, , , , ORCID Icon, , , ORCID Icon & show all
Pages 25-35 | Received 22 Apr 2022, Accepted 02 Nov 2022, Published online: 22 Nov 2022
 

Abstract

The rhythmic pattern of biological processes controlled by light over 24 h is termed the circadian rhythm. Disturbance of circadian rhythm due to exposure to light at night (LAN) disrupts the sleep-wake cycle and can promote cardiovascular disease, diabetes, cancer, and metabolic disorders in humans. We studied how dim LAN affects the circadian rhythm and metabolism using male Drosophila. Wild-type flies exposed to the dim light of 10 lux at night displayed altered 24 h sleep-wake behavior and expression patterns of circadian rhythm genes. In addition, the flies became more vulnerable to metabolic stress, such as starvation. Whole-body metabolite analysis revealed decreased amounts of branched-chain amino acids (BCAAs), such as isoleucine and valine. The dim light exposure also increased the expression of branched-chain amino acid aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKDC) enzyme complexes that regulate the metabolism of BCAAs. Flies with the Bcat heterozygous mutation were not vulnerable to starvation stress, even when exposed to dim LAN, and hemolymph BCAA levels did not decrease in these flies. Furthermore, the vulnerability to starvation stress was also suppressed when the Bcat expression level was reduced in the whole body, neurons, or fat body during adulthood using conditional GAL4 and RNA interference. Finally, the metabolic vulnerability was reversed when BCAAs were fed to wild-type flies exposed to LAN. Thus, short-term dim light exposure at night affects the expression of circadian genes and BCAA metabolism in Drosophila, implying a novel function of BCAAs in suppressing metabolic stress caused by disrupted circadian rhythm.

Acknowledgements

We thank Dr. E.Y. Kim at the Department of Brain Science, Ajou University Medical Center (Suwon, Republic of Korea) for the comments on data analysis and the Korea Drosophila Resource Center (Gwangju, Republic of Korea) for technical help on this study.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This study was supported by grants from the Korea Environment Industry and Technology Institute through the Environmental Health Action Program funded by the Korea Ministry of Environment (RE201206020) and by the National Research Foundation of Korea (NRF-2022R1F1A1075200).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,079.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.