115
Views
0
CrossRef citations to date
0
Altmetric
Retina

Automatic Identification and Severity Classification of Retinal Biomarkers in SD-OCT Using Dilated Depthwise Separable Convolution ResNet with SVM Classifier

, &
Pages 513-523 | Received 23 Jul 2023, Accepted 03 Jan 2024, Published online: 22 Jan 2024
 

Abstract

Purpose

Diagnosis of Uveitic Macular Edema (UME) using Spectral Domain OCT (SD-OCT) is a promising method for early detection and monitoring of sight-threatening visual impairment. Viewing multiple B-scans and identifying biomarkers is challenging and time-consuming for clinical practitioners. To overcome these challenges, this paper proposes an image classification hybrid framework for predicting the presence of biomarkers such as intraretinal cysts (IRC), hyperreflective foci (HRF), hard exudates (HE) and neurosensory detachment (NSD) in OCT B-scans along with their severity.

Methods

A dataset of 10880 B-scans from 85 Uveitic patients is collected and graded by two board-certified ophthalmologists for the presence of biomarkers. A novel image classification framework, Dilated Depthwise Separable Convolution ResNet (DDSC-RN) with SVM classifier, is developed to achieve network compression with a larger receptive field that captures both low and high-level features of the biomarkers without loss of classification accuracy. The severity level of each biomarker is predicted from the feature map, extracted by the proposed DDSC-RN network.

Results

The proposed hybrid model is evaluated using ground truth labels from the hospital. The deep learning model initially, identified the presence of biomarkers in B-scans. It achieved an overall accuracy of 98.64%, which is comparable to the performance of other state-of-the-art models, such as DRN-C-42 and ResNet-34. The SVM classifier then predicted the severity of each biomarker, achieving an overall accuracy of 89.3%.

Conclusions

A new hybrid model accurately identifies four retinal biomarkers on a tissue map and predicts their severity. The model outperforms other methods for identifying multiple biomarkers in complex OCT B-scans. This helps clinicians to screen multiple B-scans of UME more effectively, leading to better treatment outcomes.

Disclosure statement

The authors declare that there is no potential conflict of interest with the information in this article.

Data availability statement

Data not available – participant consent.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 555.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.