259
Views
3
CrossRef citations to date
0
Altmetric
Environmental Chemistry/Technology

The role of the direct and indirect mechanism in the advanced oxidation process induced degradation of ciprofloxacin

, , , &
Pages 1-18 | Received 05 Apr 2022, Accepted 01 Jan 2023, Published online: 19 Jan 2023
 

Abstract

The fluoroquinolone ciprofloxacin occurs worldwide in the aquatic environment and has therefore been listed on the 3rd European union watchlist for monitoring. To eliminate sewage and wastewater treatment plants as entry pathways, advanced oxidation processes have been intensely researched. Hence, photolysis at different pH ranges was studied for its capacity to eradicate ciprofloxacin. High-performance liquid chromatography coupled to high-resolution mass spectrometry was used to identify the degradation products and to monitor all compounds. Ecotoxicity was assessed using quantitative structure-activity relationship analysis comprising the Ecological Structure Activity Relationships tool. Two degradation mechanisms were found active: the direct mechanism, i.e. degradation through ultraviolet absorption by the substance, and the indirect mechanism caused by hydroxyl radicals from water photolysis. The radical scavenger tert-butanol and pH variations revealed that the indirect mechanism predominated in general. The direct photo-induced degradation proceeded about 10 times slower. Products could be attributed to the mechanisms. Based on their chemical structures, all identified products were predicted less toxic by quantitative structure-activity relationship than ciprofloxacin. Mechanistic insight suggested that photo-induced advanced oxidation processes proved efficient for ciprofloxacin elimination when generating hydroxyl radicals. Compounds and pH range hampering their occurrence diminish the efficacy of elimination.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,970.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.