253
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex

, , , , , , & show all
Pages 124-129 | Received 16 Oct 2017, Accepted 15 Sep 2018, Published online: 26 Oct 2018
 

Abstract

Akebia saponin D (ASD) exhibits a variety of pharmacological activities, such as anti-osteoporosis, neuroprotection, hepatoprotection, but has poor oral bioavailability. A self-nanoemulsifying drug delivery system loaded with akebia saponin D - phospholipid complex (APC-SNEDDS) (composition: Peceol: Cremophor® EL: Transcutol HP: ASD: phospholipid; ratio: 10:45:45:51:12.3, w:w:w:w:w) was first developed to improve the oral absorption of saponins and it was found to significantly enhance ASD’s oral bioavailability by 4.3 - fold (p < .01). This study was conducted to elucidate the mechanism of enhanced oral absorption of ASD by the drug delivery system of APC-SNEDDS. The aggregation morphology and particle size of ASD and APC-SNEDDS prepared in aqueous solutions were determined by transmission electron microscope and particle size analyzer, respectively. Stability of ASD and APC-SNEDDS in gastrointestinal luminal contents and mucosa homogenates were also explored. The differences of in situ intestinal permeability of ASD and APC-SNEDDS were compared. APC-SNEDDS reduced the aggregation size from 389 ± 7 nm (ASD) to 148 ± 3 nm (APC-SNEDDS). APC-SNEDDS increased the remaining drug in large intestine luminal contents from 47 ± 1% (ASD) to 83 ± 1% (APC-SNEDDS) during 4 h incubation. APC-SNEDDS provided an 11-fold increase in Ka value and an 11-fold increase in Peff value compared to ASD. In summary, APC-SNEDDS improved ASD’s oral bioavailability mainly by increasing membrane permeability, destroying self-micelles and inhibiting the intestinal metabolism.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science foundation of China [No. 30730113, 81703822], administration of Traditional Chinese Medicine of Jiangsu Province [No. YB2015008], and special funding for 2017 Guangxi BaGui Scholars

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.