243
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation

, &
Pages 1821-1834 | Received 03 Jun 2019, Accepted 25 Aug 2019, Published online: 24 Sep 2019
 

Abstract

Metformin (MET) was effectively encapsulated into O-carboxymethyl chitosan (O-CMC) polymeric formulation using an experimental design method. Six factors Plackett–Burman (PB) design was utilized to find the significant process parameters. Linear equations used to study the effect of each process parameters on particle size (PS), encapsulation efficiency (EE), and zeta potential (ZP) and the most influential three factors decided for further optimization. Optimization was carried out by implementing three-factor three-level Box–Behnken (BB) design. Mathematical models were generated by regression analysis for responses of PS, EE, and ZP. Two-step experimental design took into account for the preparation of optimized formulation with maximum %EE (72.78 ± 9.7%) and minimum PS (225.67 ± 5.53 nm) at optimum process conditions with a ZP of –5.22 mV for the nano-polymeric formulation in an economical matter by reduction chemical use and formulation time. Furthermore, the biological activity of the final formulation was determined by in vitro cytotoxicity study compared to free MET. The cytotoxicity result reveals that both pure drug and nano-formulation biocompatible with MCF10A non-tumorigenic cell line and lethal for the MCF7 cell line. These in vitro results were the first helpful step to further investigate O-CMC loaded MET nanoparticles in diagnostic and therapeutic applications of breast cancer.

Acknowledgements

The authors would like to thank DST-FIST, New Delhi for providing Malvern Zetasizer under DST-FIST program.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.