107
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

Ultra-wideband RCS reduction realized by a coding diffusion metasurface

, , , , &
Pages 778-789 | Received 27 Apr 2023, Accepted 18 Mar 2024, Published online: 02 Apr 2024
 

Abstract

In this study, a coding diffusion metasurface (CDMS) based on a circular-polarization (CP)-maintaining metasurface is proposed for radar cross-section (RCS) reduction. The CP-maintaining metasurface can achieve ultra-wideband CP-maintaining reflection, and its main reflection phase under CP incidence can be adjusted at will by the Pancharatnam-Berry phase generated by the rotation of its unit cell, so it can be used to design CDMS. Thus, based on the CP-maintaining metasurface, the 2-bit CDMS is proposed. The simulated and measured results demonstrate that the CDMS can achieve highly effective and ultra-wideband RCS reduction under arbitrarily polarized incidences, compared with a pure metallic plate of the same size, its RCS can be reduced by more than 10 dB under normal incidence in the ultra-wide frequency band of 7.1-33.6 GHz with a relative bandwidth of 130.2%; moreover, when the incident angle is increased to 40°, an ultra-wideband RCS reduction can still be achieved.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Data available on request from the author.

Additional information

Funding

This study was supported by the National Natural Science Foundation of China (grant number 62072378), and Key Research and Development Plan of Xianyang City (L2023-ZDYF-XCZX-006).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.