389
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Role of redox imbalance and cytokines in mediating oxidative damage and disease progression of patients with rheumatoid arthritis

, , , , , , & show all
Pages 768-779 | Received 13 Dec 2018, Accepted 05 Jun 2019, Published online: 08 Jul 2019
 

Abstract

Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disorder wherein the contributory role of oxidative stress has been established in the synovial fluid. As availability of synovial fluid is limited, this study aimed to evaluate in the peripheral blood of patients with RA, the relationship if any, between the extent of oxidative stress in terms of generation of reactive oxygen species (ROS) in neutrophils, plasma NADPH oxidase and myeloperoxidase activity with markers of oxidative damage, circulating cytokines and disease activity score (DAS28). In patients with RA, neutrophils in peripheral blood demonstrated an enhanced generation of ROS, coupled with depletion of free radical scavenging activity. Furthermore, the NADPH oxidase and myeloperoxidase activity was enhanced as were markers of damage. There was a positive correlation between the DAS 28 and generation of ROS, NADPH oxidase and myeloperoxidase activity as also with oxidative stress mediated protein carbonylation. Patients with RA demonstrated an increase in proinflammatory (IL-17, IL-23, and IFN-γ) and some anti-inflammatory (IL-4, IL-5, and TGF-β) cytokines. Although the levels of IL-17 correlated positively with generation of ROS, myeloperoxidase, markers of protein damage and DAS28, IL-23 correlated positively only with protein damage, and negatively with free radical scavenging activity. Importantly, incubation of neutrophils from healthy donors with plasma or SF from patients with RA translated into an enhanced generation of ROS, along with an elevation of intracellular proinflammatory cytokines. Taken together, in patients with RA, circulating neutrophils mediated a shift in the oxidant/antioxidant balance favouring the former, which translated into protein damage and contributed towards disease progression.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was supported by Department of Biotechnology, Govt. of India [BT/PR4641/MED/30/742/2012], Fund for Improvement of S&T infrastructure in Universities and Higher Educational Institutions, Dept. of Science & Technology, DST, Govt. of India, SR/FST/LS1-663/2016 and Dept. of Health Research, Govt. of India, “Establishment of Multidisciplinary Research Unit” no: V.25011/103/2016-HR.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.