794
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Redox regulation of regulatory T-cell differentiation and functions

, , , , , & show all
Pages 947-960 | Received 23 Sep 2019, Accepted 23 Feb 2020, Published online: 13 Apr 2020
 

Abstract

The choice between immunity or tolerance is a consequence of T-cell fate determined by T-cell receptor affinity to cognate MHC-peptide complex, costimulatory molecules and cytokines from antigen presenting cells. While activated, effector and memory T-cells provide immunity against antigens, regulatory T-cells play a pivotal non-redundant role in immune tolerance and tissue repair. T-cell differentiation and functions are also well known to be governed by the redox status. Physiological redox status is determined by oxygen concentration, reactive oxygen species levels and antioxidant concentration (vitamin C, glutathione, vitamin E). Cellular redox state influences the levels of oxygen-dependent ten-eleven translocase (TET) demethylase, hypoxia inducible factor-1α (HIF-1α), and metabolic reprogramming which in turn control the epigenetic modification, transcription, translation and post-translational stability of FoxP3, the master regulator of regulatory T-cell induction and maintenance. Redox changes during foetal development, pregnancy, ageing, infections and cancer bolster Treg differentiation for immune tolerance to non-dangerous non-self-antigens. Incidentally, the changes in blood oxygen levels in pregnant women and developing foetus are accompanied by increase in tolerance due to increased frequency of CD4 + CD25 + FoxP3+ regulatory T-cells. Ageing associated oxidative stress and solid tumour associated hypoxia are also associated with an increase in the number and function of regulatory T-cells. This review covers the aspects of redox regulation of Treg differentiation and functions during development, ageing, immunity and stem cell homeostasis. We also propose redox modulation based therapeutic interventions for prevention and treatment of T-cell associated disorders.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work is funded by Department of Atomic Energy, Government of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.