120
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Iron modulatory property of a polysaccharide from Indian medicinal plant Ocimum sanctum

, &
Pages 758-767 | Received 23 Sep 2020, Accepted 11 Dec 2020, Published online: 06 Jan 2021
 

Abstract

Despite being an essential element for normal functioning of cells and organisms, iron, in excess, can induce oxidative stress by generating reactive oxygen species. A water-soluble, non-toxic iron chelator can reduce the iron-induced oxidative stress in the body as well as help in extricating excess iron. Herein, we report an Ocimum sanctum-derived antioxidant polysaccharide (OSP) that inhibits the deleterious effect of iron. Ocimum sanctum is a widely acknowledged medicinal plant contributing toward several biological benefits. Besides showing good hydroxyl radical scavenging activity, OSP could bind to ferric and ferrous ions to prevent their participation in redox reactions as revealed from modified 2-deoxyribose assays, carried out under various conditions. It also acted as an iron modulator to prevent site-specific damage and was effective in protecting mouse fibroblast L929 cells against iron induced death.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The work was carried out with the internal departmental funding provided by Department of Atomic Energy, Government of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.