370
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

VDR promotes nucleus pulposus cell mitophagy as a protective mechanism against oxidative stress injury

, , , &
Pages 316-327 | Received 02 Feb 2022, Accepted 22 Jun 2022, Published online: 04 Jul 2022
 

Abstract

Intervertebral disk degeneration (IDD) is a common aging disease. Excessive apoptosis of nucleus pulposus (NP) cells has been widely considered a main contributor to IDD. Emerging science has shown that autophagy plays a protective role against apoptosis under oxidative stress. Vitamin D receptor (VDR) is a steroid hormone receptor that can regulate autophagy. The purpose of this study was to clarify whether VDR alleviates IDD by promoting autophagy. H2O2 stimulation was used to establish oxidative stress conditions. Initially, the expression level of VDR in human degenerative NP tissues was measured by immunohistochemistry. In addition, the CRISPR-dCas9-VPR system and siRNA were utilized to upregulate or downregulate VDR and Parkin expression, respectively. Autophagic and apoptotic markers were determined by Western blotting and RT–qPCR. Transmission electron microscopy was used to monitor the occurrence of autophagy in rat NP cells. VDR expression was downregulated in human degenerative NP tissues and H2O2-stimulated rat NP cells, indicating a negative correlation between VDR expression and IDD. VDR overexpression promoted mitophagy and prevented apoptosis and mitochondrial injury under oxidative stress. Additionally, mitophagy inhibition by 3-MA abolished the protective effect of VDR activation in vitro. Furthermore, VDR activation promoted mitophagy via the PINK1/Parkin pathway in H2O2-treated NP cells. This study demonstrates that VDR activation ameliorates oxidative damage and decreases NP cell apoptosis by promoting PINK1/Parkin-dependent mitophagy, indicating that VDR may serve as a promising therapeutic target in the management of IDD.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Shenzhen Key Medical Discipline Construction Fund [No. SZXK022] and Wu Jieping Medical Foundation [320.6750.2020-06-67].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.