148
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The microbiota catabolites of quercetin glycosides concertedly enhance the resistance against acetaldehyde-induced oxidative stress

, , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 607-616 | Received 26 Oct 2022, Accepted 13 Dec 2022, Published online: 03 Jan 2023
 

Abstract

3,4-Dihydroxyphenylacetic acid (DOPAC) and 3-hydroxyphenylacetic acid (OPAC) are the predominant catabolites of quercetin glycosides, such as quercetin 4′-O-β-glucoside from the onion, produced by intestinal microbiota. Although each catabolite has been reported to protect the cells from acetaldehyde-induced cytotoxicity, the effect of their combination remains to be clarified. The purpose of this study was to determine whether the combination of DOPAC and OPAC enhances the resistance against the acetaldehyde-induced oxidative stress in the cultured hepatocytes. The pretreatment of the combination of DOPAC (5 μM) and OPAC (5 μM) showed significant protection against the acetaldehyde- and hydrogen peroxide-induced cytotoxicity, even though each compound at the same concentration did not. This combination also significantly inhibited the intracellular dichlorofluorescin diacetate-detectable reactive oxygen species (ROS) level, whereas the solo treatment did slightly, suggesting that reducing mechanisms of ROS or compounds that enhance ROS production are involved in the cytoprotective effect. The combinatory treatment significantly enhanced the gene expression of not only the aldehyde dehydrogenases (ALDHs), but also glutamate-cysteine ligase, catalytic subunit, the first rate-limiting enzyme of glutathione (GSH) synthesis. Accordingly, both the intracellular GSH level and the total ALDH activity were enhanced by DOPAC plus OPAC. Involvement of GSH in the cytoprotection as well as ALDH up-regulation by the combination was confirmed by the experiments using a GSH biosynthesis inhibitor, buthionine sulfoximine. Taken together, the present results suggested that the quercetin microbiota catabolites concertedly protect the cells from acetaldehyde through a pre-enhanced resistance against oxidative stress by the GSH-dependent up-regulation of ALDHs.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability statement

The data will be shared on reasonable request to the corresponding author.

Additional information

Funding

This study was partly supported by MEXT KAKENHI Grant Numbers [17H04725 and 21K11676] (TN), and [25292073, 16K14928, 17H03818 and 20H02933] (YN).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 940.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.