199
Views
0
CrossRef citations to date
0
Altmetric
Articles

New approach of antioxidant properties of Zinnia elegans using bioremediation of Pb-contaminated soils

, , , &
Pages 345-362 | Published online: 27 Jul 2022
 

Abstract

There is little information on the impact of soil amendments on lead absorption by ornamental plants as phytoremediation and the antioxidant system. The experiment was set up in a factorial based on completely block design with three replications on Zinnia elegans. [Pb (NO3) at (0, 40, 80, and 120 mg kg−1), soil amendment (control, diethylene trinitrilo pentaacetic acid (DTPA) 2.5 mM, DTPA 5 mM, humic acid 200 mg. L−1, and HA 400 mg. L−1)]. Increased Pb concentration resulted in a significant rise in antioxidant enzymes, as well as an increase in Pb absorption by Z. elegans. DTPA 5 mM and HA 400 mg. L−1 application lead to significantly higher shoot dry weight (49 and 56%), root dry weight (62 and 63%), catalase (CAT) (18 and 19%), peroxidase (POX) (63 and 67%), superoxide dismutase (SOD) (10 and 14%), and shoot Pb (36 and 33 mg.kg−1) in the contaminated soil, respectively. With the application of DTPA and HA, the residual Pb in soil fell in a negative association with the remediation factor. Z. elegans growing in polluted soils treated with DTPA 5 mM and HA 400 mg. kg−1 showed Pb tolerance by inducing an effective antioxidative response to Pb toxicity and enhancing Pb absorption for phytoremediation purposes.

Disclosure statement

There are no conflicts of interest by authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.