80
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Biodegradable dust suppressants prepared from biomass-based materials: The role of viscosity and suppressed particles

ORCID Icon, &
Pages 253-260 | Received 02 Oct 2023, Accepted 01 Feb 2024, Published online: 28 Feb 2024
 

ABSTRACT

In this study, biodegradable dust suppressants were prepared using glycerol and biomass-based oily compounds, including palm oil, biodiesel, and soybean oil. The suppressing ability of the glycerol and the oily compound mixture was evaluated using wind tunnel tests, and factors affecting the suppression of the particles were determined. The replacement of sodium dodecyl sulfate with coco glucoside and lauryl glucoside significantly enhanced the biodegradability of the suppressants (2.02 vs. 9.01 and 8.54 mg/L of BOD5). The glycerol and soybean oil mixture exhibited excellent performance owing to the relatively high viscosity of the suppressants, and the optimal dilution ratio was 1:50 and 1:1000 for sand and granite-weathered soil, respectively. More than 98% of suppression was obtained under the optimal conditions. The effect of the particle properties (particularly permeability) was significant, even though the viscosity of the suppressants was responsible for the suppression of the particles. Our results suggest that the mixture of glycerol and biomass-based oily compounds could be a promising suppressant for reducing the mobility of ultrafine particles in the atmosphere.

Implications: Since the early 2010s, anthropogenic fugitive dust from industrial activities has become a serious environmental issue due to its serious hazards to the environment and human health in South Korea. So far, several dust suppressants (mostly salts) were made and used for field application. However, due to their toxic effects, it is necessary to develop a new eco-friendly suppressant that can be biodegraded in the soil and that is not hazardous to human health or the environment. Previously we have developed an eco-friendly dust suppressant with low toxicity and high suppression ability using ingredients and by-products of biodiesel production, marine biomass, and commercial vegetable oils (Tsgot and Oh 2021, J. Air Waste Manag. Assoc. 71:1386–1396). However, due to the low biodegradability of surfactant, the synthesized dust suppressants showed limited biodegradability. As a follow-up to our previous study, we employed readily biodegradable surfactants as additives to enhance the biodegradability of the dust suppressants with the same excellent suppressing ability. To determine the optimal conditions, the synthesis and preparation of the dust suppressants was conducted using biodegradable surfactants, including coco glucoside and lauryl glucoside. The factors affecting the suppressing ability of the suppressants were examined via wind tunnel tests. These factors include the dilution factors, the viscosity of the suppressants, and the type of suppressed particles. Possible suppressing mechanisms were also discussed.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data that support the findings of this study are available from the corresponding author, S.Y. Oh, upon reasonable request.

Additional information

Funding

This research was supported by the 2023 research fund of the University of Ulsan, South Korea.

Notes on contributors

Seok-Young Oh

Seok-Young Oh is a Professor at the University of Ulsan (2007-present), and a B.S. and M.S. from Seoul National University. Ph.D. from the University of Delaware.

Soo-Won Cha

Soo-Won Cha is a Professor at the University of Ulsan (2006-present) and, has a B.S., M.S., and Ph.D. from Seoul National University.

Hyungwoo Lee

Hyungwoo Lee is an M.S. Student at the University of Ulsan and, a B.S. from the University of Ulsan.

Log in via your institution

Log in to Taylor & Francis Online

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 60.00 Add to cart

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.