313
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Electromagnetic field exposure to human head model with various metal objects at sub-6 GHz frequencies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 114-122 | Received 21 Jun 2022, Accepted 29 May 2023, Published online: 04 Jun 2023
 

ABSTRACT

In recent years, the interactions of metal objects in human body with electromagnetic fields caused by devices working at fifth-generation (5G) frequencies have been studied by various researchers. A motivation behind this research was to evaluate the human body absorption of electromagnetic energy operating at sub-6 GHz 5G applications. According to this, the specific absorption rate (SAR) caused by new generation mobile phones was investigated in human heads wearing metal-framed spectacles and having metallic implants or earrings to analyse electromagnetic field exposure. A realistic human head model, including some metal objects, was numerically calculated, and analysed in terms of non-ionizing dosimetry. Simulations were carried out with the finite integration technique (FIT) based commercial software in the frequencies of 0.9, 1.8, 2.1, 2.45, 3.5 and 5 GHz, respectively. The maximum SAR of 14 × 10−5 W/kg for 10 g average tissue was calculated at 2.45 GHz frequency in the head model with earrings. The highest electric field strength of 0.52 V/m was observed at a 1.8 GHz frequency in the head model with all metal objects equipped. Results show that metal objects such as spectacles, dental implants and earrings can cause an increase in the SAR values for external biological tissues, and metal objects can behave as a kind of shield for deeper tissues. However, the obtained values are below the limits of international organisations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.