91
Views
0
CrossRef citations to date
0
Altmetric
Research article

Spatial enhancement of Landsat-9 land surface temperature imagery by Fourier transformation-based panchromatic fusion

, , &
Pages 88-109 | Received 27 Jun 2023, Accepted 04 Dec 2023, Published online: 19 Dec 2023
 

ABSTRACT

Landsat-9 Panchromatic (PAN) band images are 7 times finer than land surface temperature (LST) photos of the Thermal Infrared (TIR) band. PAN bands have superior image resolution, consistency, and less ambiguity than TIR bands due to their smaller pixel sizes. Image fusion enhances images by combining data from several sources to make them better. Image fusion methods cannot combine PAN and TIR bands. This research proposes Fourier Transformation-based fusion (FTBF) to merge PAN and TIR band data to spatially enhance Landsat-9 LST images from 100 m to 15 m resolution. Fourier transformation integrates frequency domain filtering and spatial matching in FTBF. In-situ infrared thermometers data loggers verified temperature and picture quality parameters for FTBF algorithm fused image thermal points. Comparing downscaled LST with ground truth points yielded an RMSE of 0.18 and a correlation of 0.93. Eight qualitative and quantitative characteristics reveal that FTBF fusion methods improve TIR picture spatial resolution and preserve original LST data thermal attributes. LST-Pan fusion can detect surface temperature change for land-use change, fire detection, forest fire, agricultural analysis, crop management, and flood mapping at finer scales.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets generated during the current study are available from the corresponding author on reasonable request.

Declaration Statements

Conflict of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Funding

The authors did not receive support from any organisation for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 256.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.