152
Views
1
CrossRef citations to date
0
Altmetric
Articles

ADAM17 regulates the proliferation and extracellular matrix of keloid fibroblasts by mediating the EGFR/ERK signaling pathway

&
Pages 129-136 | Received 06 Aug 2021, Accepted 08 Dec 2021, Published online: 03 Jan 2022
 

Abstract

To investigate the role of a disintegrin and metalloprotease protein 17 (ADAM17) in regulating the proliferation and extracellular matrix (ECM) expression of keloid fibroblasts (KFs) via the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway. ADAM17 expression in keloid tissues was detected by western blotting. KFs were isolated, cultured and divided into the control, shNC (negative control), shADAM17, transforming growth factor-β1 (TGF-β1), TGF-β1 + shNC and TGF-β1 + shADAM17 groups. The expression of ECM was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Western blotting was performed to detect the expression of proteins. Cell proliferation was detected by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while cell invasion and migration were examined by Transwell and wound healing assays. The expression of ADAM17 was increased in keloid tissues and KFs. Compared with the control group, the expression of p-EGFR and p-ERK/1/2/ERK1/2, as well as the expression of collagen I, collagen III, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA), were decreased in KFs from the shADAM17 group, with decreased cell proliferation, invasion and migration. In contrast, the TGF-β1 group presented the opposite trend in these aspects. In addition, compared with the TGF-β1 group, KFs from the TGF-β1 + shADAM17 group had decreased ECM expression, proliferation, invasion and migration. ADAM17 expression was upregulated in keloid tissues. Silencing ADAM17 may inhibit the activity of the EGFR/ERK pathway to limit the deposition of ECM in KFs with reduced proliferation, invasion and migration.

Acknowledgements

Thank you for all the reviewers in this study.

Disclosure statement

The authors declare that they have no competing interests.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.