Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 38, 2008 - Issue 9
501
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Genetic variants of organic cation transporter 2 (OCT2) significantly reduce metformin uptake in oocytes

, &
Pages 1252-1262 | Received 21 Mar 2008, Accepted 14 Apr 2008, Published online: 16 Oct 2008
 

Abstract

1. The authors sought to evaluate the contribution of organic cation transporters (OCTs) to the renal tubular transport of metformin using LLC-PK1 cells as an in vitro model for the renal proximal tubule, and to investigate the effects of three non-synonymous genetic variants of OCT2 on the transport activity of metformin in vitro using an oocyte over-expression system.

2. The basolateral-to-apical transport of metformin was significantly greater than the apical-to-basolateral transport and showed concentration dependency with the kinetic parameters: maximum transport rate (Vmax), 922 pmol min−1 per 5 × 105 cells; Michaelis–Menten constant (Km), 393 µM; intrinsic clearance (CLint), 2.35 µl min−1 per 5 × 105 cells; and diffusion constant (Kd), 0.33 µl min−1 per 5 × 105 cells. The basolateral-to-apical transport of metformin was inhibited by phenoxybenzamine, an inhibitor of OCTs, but not by cyclosporine A, MK571, or fumitremorgin C, which are inhibitors of P-glycoprotein, multidrug resistance proteins (MRPs), and breast cancer resistance protein (BCRP), respectively, suggesting that OCTs play a role in renal tubular secretion of metformin.

3. Metformin uptake was much greater in oocytes expressing OCT2-wild type (OCT2-WT) than OCT1-WT compared with uptake in water-injected oocytes. Uptake was significantly decreased in oocytes expressing OCT2-T199I, -T201M, and -A270S compared with that in OCT2-WT, suggesting that metformin is a better substrate for OCT2 than for OCT1 and that the amino acid-substituted variants of OCT2 cause a functional decrease in metformin uptake.

4. In conclusion, the genetic variants of OCT2 (OCT2-T199I, -T201M, and -A270S) decreased the transport activity of metformin and thus may contribute to the inter-individual variation in metformin disposition as OCT2 plays a pivotal role in renal excretion, the major disposition route of metformin.

Acknowledgements

This work was supported by a grant from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Korea (Grant No. A030001) and by the 2007 Inje University Research Grant.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.