Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 32, 2008 - Issue 1-2
70
Views
13
CrossRef citations to date
0
Altmetric
Original

Variable Inhibitory Effects on the Formation of Dinitrosyl Iron Complexes by Deferoxamine and Salicylaldehyde Isonicotinoyl Hydrazone in K562 Cells

, , , &
Pages 157-163 | Published online: 07 Jul 2009
 

Abstract

A prerequisite of dinitrosyl iron complexes (DNIC) formation is the presence of nitric oxide (NO), iron (Fe) and thiol/imidazole groups. The aim of this study was to investigate the influence of Fe chelators on the formation of DNIC in erythroid K562 cells. The cells were treated with lipophilic salicylaldehyde isonicotinoyl hydrazone (SIH) (0.1 mM) and hydrophilic deferoxamine mesylate (DFO) (1 mM), a membrane permeable and non permeable Fe chelator, respectively. Dinitrosyl Fe complexes were generated by addition of 0.07 mM diethylamine NO. The DNIC formation was recorded using electron paramagnetic resonance (EPR). Both chelators inhibited DNIC formation up to 50% after 6 hours of treatment. Taken together, our data suggest that an intracellular low molecular weight labile Fe pool (LIP) and protein-bound Fe participate in DNIC formation in K562 cells to a similar extent.

Notes

*Presented at the 16th International Conference on Chelation, Limassol, Cyprus, October 25–31, 2006.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,628.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.