291
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Current and Potential Rodent Screens and Tests for Thyroid Toxicants

, &
Pages 55-95 | Published online: 10 Oct 2008
 

Abstract

This article reviews current rodent screens and tests to detect thyroid toxicants. Many points of disruption for thyroid toxicants are outlined and include: (a) changes in serum hormone level; (b) thyroperoxidase inhibitors; (c) the perchlorate discharge test; (d) inhibitors of iodide uptake; (e) effects on iodothyronine deiodinases; (f) effects on thyroid hormone action; and (g) role of binding proteins (e.g., rodent transthyretin). The major thyroid endpoints currently utilized in existing in vivo assay protocols of the Organization for Economic Cooperation and Development (OECD), Japanese researchers, and U.S. Environmental Protection Agency (EPA) include thyroid gland weight, histopathology, circulating thyroid hormone measurements, and circulating thyroid-stimulating hormone (TSH). These endpoints can be added into the existing in vivo assays for reproduction, development, and neurodevelopment that are outlined in this chapter. Strategic endpoints for possible addition to existing protocols to detect effects on developmental and adult thyroid endpoints are discussed. Many of these endpoints for detecting thyroid system disruption require development and additional research before they can be considered in existing assays. Examples of these endpoints under development include computer-assisted morphometry of the brain and evaluation of treatment-related changes in gene expression, thyrotropin-releasing hormone (TRH) and TSH challenge tests, and tests to evaluate thyroid hormone (TH)-dependent developmental events, especially in the rodent brain (e.g., measures of cerebellar and cortical proliferation, differentiation, migration, apoptosis, planimetric measures and gene expression, and oligodendrocyte differentiation). Finally, TH-responsive genes and proteins as well as enzyme activities are being explored. Existing in vitro tests are also reviewed, for example, thyroid hormone (TH) metabolism, receptor binding, and receptor activation assays, and their restrictions are described. The in vivo assays are currently the most appropriate for understanding the potential effects of a thyroid toxicant on the thyroid system. The benefits and potential limitations of the current in vivo assays are listed, and a discussion of the rodent thyroid system in the context of human health is touched upon. Finally, the importance of understanding the relationship between timing of exposure, duration of dose, and time of acquisition of the endpoints in interpreting the results of the in vivo assays is emphasized.

Notes

1Figure Copyright 2004, The Endocrine Society. Used by permission. (Morte et al., 2004)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 739.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.