305
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Bio-distribution and anti-tumor efficacy of PEG/PLA nano particles loaded doxorubicin

, , , , , , , , & show all
Pages 279-284 | Received 06 Dec 2006, Accepted 19 Mar 2007, Published online: 08 Oct 2008
 

Abstract

As a more effective in vivo drug delivery system, several methods loading anti-cancer drugs to biodegeradable and biocompatible nano-particles have been explored and developed. Supposedly due to the enhanced permeability and retention (EPR) effect, systemic administration of these nano-particles have been found to result in accumulation of nano-particles into solid tumors. In this study, we prepared nano-particles using polyethylene glycol (PEG)/poly-l-lactide (PLLA) diblock copolymer and loaded doxorubicin into these nano-particles (Nano-dox). The fabricated nano-particles exhibited sustained release kinetics of the drug in vitro. To follow the in vivo biodistribution of 200–350 nm sized nano-dox particles in tumor (syngenic renal cell adenocarcinoma: RENCA) bearing mouse, the carboxylfluorescenin diacetate succinimidyl ester (CFSE) was loaded into the nano-particles. Nano-dox accumulated preferentially in tumors; however, in terms of its anti-tumor efficacy, it did not show any marked benefits, compared to freely-administered doxorubicin. This result suggests the need to re-consider and evalute what type of anti-cancer reagents we to be used in the ongoing efforts of coupling drug delivery system with tumor EPR effects.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.