61
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Lead-Induced Stress Response in Endoplasmic Reticulum of Astrocytes in CNS

, , , &
Pages 751-757 | Received 16 Oct 2007, Accepted 23 Dec 2007, Published online: 02 Dec 2008
 

ABSTRACT

Lead is one of the most widespread toxicants in the environment, and its neurotoxicity contributes to a major medical issue. Numerous studies have shown that astrocytes are the main sites of Pb deposition in the central nervous system. A large amount of lead depositing in the astrocyte cells would result in the accumulation of unfolded protein in the endoplasmic reticulum (ER), which up-regulates the expression of molecular chaperones and meanwhile inhibits the cell-cycle progression and the transcription of certain proteins. The unfolded protein response (UPR) could down-regulate the expression of protein cyclinD1 and cause the stagnation of cell-cycle in primary-cultured astrocytes of rat. However, lead neither has obvious effects on the expression of C/EBP homologous protein (CHOP) nor achieves cell apoptosis in the progress of lead-induced UPR. When the stagnation of cell-cycle happens, glucose regulated protein of 78 kDa (GRP78) and other chaperones come to themselves to transport a body of unfolded-protein, consequently making cells survive.

The authors’ work is supported by the National Natural Science Foundation China No. 39970651.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.