2,821
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Development and characterization of a novel conductive polyaniline-g-polystyrene/Fe3O4 nanocomposite for the treatment of cancer

, ORCID Icon, , , , , , , , , & show all
Pages 873-881 | Received 11 Oct 2018, Accepted 19 Dec 2018, Published online: 15 Mar 2019

Figures & data

Scheme 1. Strategies for the preparation of well-defined and conductive polymer-Fe3O4 nanocomposites.

Scheme 1. Strategies for the preparation of well-defined and conductive polymer-Fe3O4 nanocomposites.

Scheme 2. Synthesis of ATRP initiator onto Fe3O4 nanoparticles.

Scheme 2. Synthesis of ATRP initiator onto Fe3O4 nanoparticles.

Scheme 3. Metal catalyzed controlled radical polymerization of styrene onto Fe3O4 nanoparticle and functionalization of grafted polymer.

Scheme 3. Metal catalyzed controlled radical polymerization of styrene onto Fe3O4 nanoparticle and functionalization of grafted polymer.

Scheme 4. Synthesis of conductive copolymer nanocomposite by in situ chemical oxidating polymerization.

Scheme 4. Synthesis of conductive copolymer nanocomposite by in situ chemical oxidating polymerization.

Figure 1. X-ray diffraction spectra of Fe3O4 nanoparticles (a) Fe3O4/PSt (b) Fe3O4/PSt-g-PANi.

Figure 1. X-ray diffraction spectra of Fe3O4 nanoparticles (a) Fe3O4/PSt (b) Fe3O4/PSt-g-PANi.

Figure 2. FT-IR spectra of (a) Fe3O4 nanoparticles (b) Br-MPA and (c) Fe3O4/Br-MPA.

Figure 2. FT-IR spectra of (a) Fe3O4 nanoparticles (b) Br-MPA and (c) Fe3O4/Br-MPA.

Figure 3. Energy-dispersive X-ray(EDX) analysis of Fe3O4/Br-MPA.

Figure 3. Energy-dispersive X-ray(EDX) analysis of Fe3O4/Br-MPA.

Table 1. Energy-dispersive X-ray (EDX) analysis of Fe3O4-Br-MPA macroinitiator.

Figure 4. FT-IR spectra of (a) Fe3O4/PSt (b) Fe3O4/PSt-NO2 (c) Fe3O4/PSt-NH2.

Figure 4. FT-IR spectra of (a) Fe3O4/PSt (b) Fe3O4/PSt-NO2 (c) Fe3O4/PSt-NH2.

Figure 5. SEM image Of (a) Fe3O4 (b) Fe3O4/PSt.

Figure 5. SEM image Of (a) Fe3O4 (b) Fe3O4/PSt.

Figure 6. FT-IR spectra of Fe3O4/PSt-g-PANi nanocomposite.

Figure 6. FT-IR spectra of Fe3O4/PSt-g-PANi nanocomposite.

Figure 7. SEM of Fe3O4/PSt-g-PANi nanocomposite.

Figure 7. SEM of Fe3O4/PSt-g-PANi nanocomposite.

Figure 8. Thermogravimetric analysis of (a) Fe3O4 nanoparticles, (b) Fe3O4/PSt, (c) Fe3O4/PSt-g-PANi nanocomposite.

Figure 8. Thermogravimetric analysis of (a) Fe3O4 nanoparticles, (b) Fe3O4/PSt, (c) Fe3O4/PSt-g-PANi nanocomposite.

Figure 9. Transmission electron microscopy (TEM) images of (a) Fe3O4 nanoparticles (b) Fe3O4/PSt-g-PANi nanocomposite.

Figure 9. Transmission electron microscopy (TEM) images of (a) Fe3O4 nanoparticles (b) Fe3O4/PSt-g-PANi nanocomposite.

Table 2. Characteristics of the conductive nanocomposite.

Figure 10. Cyclic voltammetry curves (CVs) of the chemically synthesized (a) homo-PANi (b) Fe3O4/PSt-g-PANi.

Figure 10. Cyclic voltammetry curves (CVs) of the chemically synthesized (a) homo-PANi (b) Fe3O4/PSt-g-PANi.