76
Views
16
CrossRef citations to date
0
Altmetric
Special Report

Creating tissue microarrays by cutting-edge matrix assembly

&
Pages 673-680 | Published online: 09 Jan 2014
 

Abstract

Tissue microarrays have become widely adopted for effective parallel in situ analysis of hundreds of tissues placed onto single slides. Traditionally, tissue core punches are transferred into predrilled holes within a scaffold block of paraffin or other material, and sectioned transversely by a microtome to generate array sections. While core-based arraying has greatly advanced tissue analyses, some of the limitations include restricted feature sizes and numbers, variable core depths of unpredictable tissue quality and inability to array thin-walled, stratified tissue samples such as intestines, vessels or skin. Overcoming these limitations, the authors have developed a practical arraying method that combines serial cutting and edge-to-edge bonding of samples to assemble a scaffold-free array matrix – cutting-edge matrix assembly. Using cutting-edge matrix assembly, the authors have successfully placed more than 10,000 individual tissue pieces on a single histology glass slide. The potential biomedical utility and ongoing efforts to further develop the assembly technology and analysis of high-density cutting-edge matrix assembly tissue microarrays is discussed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 570.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.