876
Views
76
CrossRef citations to date
0
Altmetric
Review

Nano Encapsulated Curcumin: And Its Potential for Biomedical Applications

, , & ORCID Icon
Pages 3099-3120 | Published online: 01 May 2020

Figures & data

Figure 1 Chemical structures of (A) curcumin, (B) demethoxycurcumin and (C) bisdemethoxycurcumin.

Figure 1 Chemical structures of (A) curcumin, (B) demethoxycurcumin and (C) bisdemethoxycurcumin.

Figure 2 The uptake of F-CUR-L through folate receptor-mediated endocytosis pathway.

Figure 2 The uptake of F-CUR-L through folate receptor-mediated endocytosis pathway.

Figure 3 Schematic representation of pH-triggered release of IM-Chol liposomes. Reprinted from Int J Pharm. 518. Ju L, Cailin F, Wenlan W, et al. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives, 213–219, Copyright 2017, with permission from Elsevier.Citation42

Figure 3 Schematic representation of pH-triggered release of IM-Chol liposomes. Reprinted from Int J Pharm. 518. Ju L, Cailin F, Wenlan W, et al. Preparation and properties evaluation of a novel pH-sensitive liposomes based on imidazole-modified cholesterol derivatives, 213–219, Copyright 2017, with permission from Elsevier.Citation42

Table 1 Different Types of Cur-Loaded Polymeric Micelles

Figure 4 In vitro release profiles of (A) Dox and (B) Cur from D + C/NPs at pH 7.4 or 5.8. Reprinted from Acta Biomater. 58. Zhang J, Li J, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities, 349–364, Copyright 2017, with permission from Elsevier.Citation60

Figure 4 In vitro release profiles of (A) Dox and (B) Cur from D + C/NPs at pH 7.4 or 5.8. Reprinted from Acta Biomater. 58. Zhang J, Li J, Shi Z, et al. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities, 349–364, Copyright 2017, with permission from Elsevier.Citation60

Figure 5 Chemical structures of (A) C16-SS-CS-mPEG and (B) C16-CC-CS-mPEG.

Figure 5 Chemical structures of (A) C16-SS-CS-mPEG and (B) C16-CC-CS-mPEG.

Figure 6 Schematic representation comparing cytotoxic effect of (A) pure curcumin and (B) curcumin loaded MCM-41on SCC-25 cells. MCM-41-CUR was achieved via hydrogen-bond interaction and showed higher cytotoxicity. Reprinted from RSC Adv. 4. Jambhrunkar S, Karmakar S, Popat A, et al. Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin, 709–712, Copyright 2014, with permission from The Royal Society of Chemistry.Citation96

Figure 6 Schematic representation comparing cytotoxic effect of (A) pure curcumin and (B) curcumin loaded MCM-41on SCC-25 cells. MCM-41-CUR was achieved via hydrogen-bond interaction and showed higher cytotoxicity. Reprinted from RSC Adv. 4. Jambhrunkar S, Karmakar S, Popat A, et al. Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin, 709–712, Copyright 2014, with permission from The Royal Society of Chemistry.Citation96

Figure 7 Chemical structures of most frequently used cyclodextrins.

Figure 7 Chemical structures of most frequently used cyclodextrins.

Table 2 Preparation Methods of Cur-Loaded Nanocrystals

Figure 8 Characterization of formulations. (A) Appearances of free Cur, Cur-NCs, and HA@Cur-NCs. TEM images of (B) Cur-NCs and (C) HA@Cur-NCs. Reprinted from Biomater Sci. Ji P, Wang L, Chen Y, et al. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution, 462-472. Copyright 2020, with permission from The Royal Society of Chemistry.Citation167

Figure 8 Characterization of formulations. (A) Appearances of free Cur, Cur-NCs, and HA@Cur-NCs. TEM images of (B) Cur-NCs and (C) HA@Cur-NCs. Reprinted from Biomater Sci. Ji P, Wang L, Chen Y, et al. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution, 462-472. Copyright 2020, with permission from The Royal Society of Chemistry.Citation167

Table 3 Examples of Cur-Loaded Nanoformulations for Treatment of Different Diseases