2,391
Views
239
CrossRef citations to date
0
Altmetric
Review

New insights into the use of currently available non-steroidal anti-inflammatory drugs

&
Pages 105-118 | Published online: 20 Feb 2015

Figures & data

Figure 1 Mechanism of action of NSAIDs.

Notes: COX-1 and COX-2 catalyze conversion of arachidonic acid into the intermediate metabolite PGH2, which is the rate-limiting step of prostanoid formation. The activity of different prostanoids in a tissue depends on the cell type–specific expression of their receptors and on their biosynthesis. tNSAIDs and coxibs act by selectively inhibiting COX-1–dependent and/or COX-2–dependent prostanoid biosynthesis.Citation19,Citation88Citation90
Abbreviations: COX, cyclooxygenase; cPGES, cytosolic PGE2 synthase; CRTH2, chemoattractant receptor–homologous molecule expressed on T helper 2 cells; DP, PGD2 receptor; EP, PGE receptor; FP, PGF receptor; GI, gastrointestinal; H-PGDS, hematopoietic PGD synthase; IP, PGI2 receptor; L-PGDS, lipocalin-type PGD synthase; mPGES, membrane-associated PGE2 synthase; PG, prostaglandin; PGFS, PGF synthase; PGIS, PGI2 synthase; tNSAIDs, traditional non-steroidal anti-inflammatory drugs; TP, TX receptor; TxA2, thromboxane A2; TXS, thromboxane synthase.
Figure 1 Mechanism of action of NSAIDs.

Figure 2 Selectivity of NSAIDs for COX-1 and COX-2.

Notes: (A) Relationship between inhibition of TxA2 in vivo and inhibition of COX-1 activity ex vivo is non-linear. (B) Conversely, the relationship between inhibition of prostacyclin in vivo and inhibition of COX-2 activity ex vivo is linear.Citation19,Citation44 (C) Relative COX-1/COX-2 selectivity of NSAIDs at their IC50 is shown, where higher values (>1) indicate greater selectivity for COX-2, while lower values (<1) indicate greater selectivity for COX-1.Citation19,Citation27,Citation42,Citation47Citation52 reprinted from García Rodríguez LA, Tacconelli S, Patrignani P. Role of dose potency in the prediction of risk of myocardial infarction associated with nonsteroidal anti-inflammatory drugs in the general population. J Am Coll Cardiol. 2008;52(20):1628–1636, with permission from Elsevier.Citation21
Abbreviations: ASA, acetylsalicylic acid; COX, cyclooxygenase; IC50, half-maximal inhibitory concentration; NSAID, non-steroidal anti-inflammatory drug; PGI-M, 2,3-dino-6-keto-prostaglandin F; TxA2, thromboxane A2.
Figure 2 Selectivity of NSAIDs for COX-1 and COX-2.

Figure 3 Average inhibition of whole-blood COX-2 activity (A) and COX-1 activity (B) by NSAIDs. Inhibition was observed over 8 hours following dosing with different NSAIDs.

Note: Reproduced with permission from Van Hecken A, Schwartz JI, Depré M, et al. Comparative inhibitory activity of rofecoxib, meloxicam, diclofenac, ibuprofen, and naproxen on COX-2 versus COX-1 in healthy volunteers. J Clin Pharmacol. 2000;40(10):1109–1120. ©1999–2014 John Wiley & Sons, Inc.Citation54
Abbreviations: BID, twice-daily dosing; COX, cyclooxygenase; NSAID, non-steroidal anti-inflammatory drug; PGE2, prostaglandin E2; QD, once-daily dosing; TID, dosing three times per day; TxB2, thromboxane B2.
Figure 3 Average inhibition of whole-blood COX-2 activity (A) and COX-1 activity (B) by NSAIDs. Inhibition was observed over 8 hours following dosing with different NSAIDs.

Figure 4 NSAID concentration in inflamed tissue/synovial fluid and plasma.

Notes: For an acidic, rapid-release NSAID, the concentration of drug peaks quickly in the plasma after dosing, then declines rapidly, while the concentration in the synovial fluid peaks with some delay and declines slowly. At therapeutic dosing levels, this could result in persistent therapeutic activity (inhibition of hyperalgesia-inducing prostaglandins) in the absence of high plasma concentrations, as drug levels in the synovial fluid exceed the concentration required for 80% inhibition of COX-2 activity (the level of inhibition required for full analgesic efficacy,Citation55,Citation60 shown in blue shading), while potentially allowing for a period of recovery of the blood/vasculature and other central organs (eg, kidney, shown in green shading).Citation57,Citation60 This figure shows the approximate changes in plasma and tissue/synovia concentrations after multiple twice-daily dosing (Day 8 is shown in this example). The red arrows beneath the x axis indicate dosing times.
Abbreviations: COX, cyclooxygenase; NSAID, non-steroidal anti-inflammatory drug.
Figure 4 NSAID concentration in inflamed tissue/synovial fluid and plasma.

Figure 5 Predicted annual absolute risks of major vascular events or upper gastrointestinal complications with long-term, high-dose therapy.

Notes: Risks (±1 standard error) are shown for (A) coxib, (B) diclofenac, (C) ibuprofen, and (D) naproxen for patients with the specified predicted annual risk of a major vascular event (left panels) or an upper gastrointestinal complication (right panels). The predicted annual risk of upper gastrointestinal complications is lower for NSAIDs with greater COX-2 selectivity (eg, coxibs and diclofenac), while the risk of major vascular events is comparable between these drugs. Naproxen, which has no COX-2–specific selectivity, shows some cardioprotective effects but more gastrointestinal toxicity. Reproduced from Coxib and traditional NSAID Trialists’ (CNT) Collaboration. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382(9894):769–779. Permission conveyed through Copyright Clearance Center, Inc.Citation20
Abbreviations: COX, cyclooxygenase; NSAIDs, non-steroidal anti-inflammatory drug; pa, per annum; SE, standard error.
Figure 5 Predicted annual absolute risks of major vascular events or upper gastrointestinal complications with long-term, high-dose therapy.

Figure 6 Determinants and sources of variability in the individual response to an NSAID.

Notes: There are a number of factors that influence the likelihood of experiencing GI or CV adverse events associated with NSAID use. The pharmacokinetics and pharmacodynamics of the drug may be affected by genetic factors (eg, differences in expression of drug-metabolizing enzymes). In addition, individual clinical and demographic characteristics may affect the therapeutic activity and tolerability of the NSAID. Adapted with permission from Patrono C, Patrignani P, García Rodríguez LA. Cyclooxygenase-selective inhibition of prostanoid formation: transducing biochemical selectivity into clinical read-outs. J Clin Invest. 2001;108(1):7–13. Permission conveyed through Copyright Clearance Center, Inc.Citation31
Abbreviations: ASA, acetylsalicylic acid; COX, cyclooxygenase; CV, cardiovascular; CYP, cytochrome enzymes; GI, gastrointestinal; NSAID, non-steroidal anti-inflammatory drug; PU, peptic ulcer; SNP, single-nucleotide polymorphism.
Figure 6 Determinants and sources of variability in the individual response to an NSAID.

Table 1 Risk factors for NSAID gastrointestinal and cardiovascular side effects

Table 2 Prevention strategies in patients with cardiovascular and/or gastrointestinal risk factors treated with NSAIDs

Unknown widget #6172f685-4ab3-49de-a3ba-1ddc57b96120

of type scholix-links