204
Views
15
CrossRef citations to date
0
Altmetric
Nephrology

Skewed X-chromosome inactivation causing diagnostic misinterpretation in congenital nephrogenic diabetes insipidus

, , , , &
Pages 324-330 | Received 19 Feb 2010, Accepted 23 Mar 2010, Published online: 12 May 2010
 

Abstract

Objective. To establish the clinical phenotype and genetic background in a family with diabetes insipidus. Material and methods. The subjects were a sister and brother, aged 34 and 27 years, respectively, with a history of polyuria since infancy. Clinical testing confirmed a diagnosis of congenital nephrogenic diabetes insipidus (CNDI) in both. Samples of purified genomic DNA were analysed. Results. The sequence of the entire coding region of the AQP2 gene as well as the AVPR2 gene was determined. Sequence analysis revealed no variations in the AQP2 gene. A missense variation in exon 2 of the AVPR2 gene (g.685G>A), predicting a p.Asp85Asn substitution, was identified in the X-chromosome of the affected male and one allele in the sister and the asymptomatic mother. The p.Asp85Asn variation in AVPR2 is known to cause CNDI, and has previously been described as inducing a partial phenotype treatable with dDAVP. However, in this family dDAVP had no influence on urine osmolality, whereas combination therapy with indomethacin and hydrochlorothiazide increased urine osmolality to 299 mosm/l in the proband. A skewed X-inactivation pattern (93%) occurring in the normal X allele was recognized in the sister. Conclusions. This study demonstrates the effect of skewed X-chromosome inactivation associated with X-linked CNDI. Polydipsia in early childhood could be due to X-linked CNDI despite affecting both genders. The significant heterogeneity in the clinical phenotype in CNDI carries a risk of diagnostic misinterpretation and emphasizes the need for genetic characterization. Treatment combining indomethacin and hydrochlorothiazide results in a marked response on both urine output and urine osmolality.

Acknowledgements

The authors would like to thank Jane Hagelkjær Knudsen for her skilled laboratory assistance, Margrethe Kjeldsen for her assistance with DNA sequence analysis and Inger Juncker for her assistance on X-chromosome inactivation analysis. This work was supported by the Karen Elise Jensen Fund, the Novo Nordisk Foundation and Aarhus University, Denmark.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.