517
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Hypoxia mimetic deferoxamine influences the expression of histone acetylation- and DNA methylation-associated genes in osteoblasts

, &
Pages 228-235 | Received 24 Oct 2014, Accepted 05 Feb 2015, Published online: 16 Mar 2015
 

Abstract

Purpose of the study: Sufficient oxygen supply to bone tissue is essential for normal bone development and efficient bone repair. Hypoxia and hypoxia-inducible factor 1α (HIF1α) signaling pathway have been shown to exhibit profound effects on proliferation, differentiation as well as gene and protein expression in osteoblasts, osteoclasts and mesenchymal stem cells; however, as epigenetic mechanisms also perform an important regulatory role in these cells, our aim was to elucidate whether hypoxia mimetic deferoxamine could influence epigenetic mechanisms in bone cells by modulating the gene expression levels of chromatin-modifying enzymes.

Materials and methods: Osteoblast cell line HOS was exposed to deferoxamine, a widely used hypoxia mimetic, and expression profile of 40 genes associated with histone acetylation, deacetylation and DNA methylation was determined using quantitative real time polymerase chain reaction (qPCR) array followed by individual qPCR analyses. In addition, genes associated with hypoxia response, RANK/RANKL/OPG system, WNT/β-catenin signaling pathway and oxidative stress were also analyzed.

Results: We observed induced expression of histone deacetylase 9 (HDAC9) and suppressed expression of K(lysine) acetyltransferase 5 (KAT5) and DNA methyltransferase 3A (DNMT3A) demonstrating for the first time that expression of genes encoding chromatin-modifying enzymes could be influenced by hypoxia mimetic in HOS cells.

Conclusions: Based on our results we can conclude that hypoxia mimetic deferoxamine influences expression of histone acetylation- and DNA methylation-associated genes in osteoblasts and that further studies of hypoxia-induced epigenetic changes in bone cells should be undertaken.

Acknowledgments

The authors would like to thank Špela Kos for her help with conducting the experiments.

Declaration of interest

The authors declare that they have no competing interests.

This work was supported by the Slovenian Research Agency (grants ARMR19, P3-0298 and J3-5511).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,908.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.