741
Views
32
CrossRef citations to date
0
Altmetric
CELLULAR AND MOLECULAR BIOLOGY

Celecoxib Downregulates CD133 Expression Through Inhibition of the Wnt Signaling Pathway in Colon Cancer Cells

, , , , &
Pages 97-102 | Published online: 17 Dec 2012
 

Abstract

CD133-positive cancer stem cells in colon cancer are resistant to conventional chemotherapy. The aim of the present study was to investigate the effect of celecoxib, a COX-2 inhibitor, on CD133 expression in HT29 and DLD1 cells. HT29 and DLD1 cells were treated with celecoxib using different concentrations and duration. CD133 expression was detected by flow cytometry, Western blotting, immunofluorescence, and quantitative real-time PCR. Wnt signaling pathway activity was measured by luciferase assay and gene expression changes were monitored using microarray analysis. HT29 cells showed significantly decreasing levels of CD133 expression with increasing concentrations of or duration of exposure to celecoxib. CD133 mRNA relative expression in HT29 and DLD1 cells also decreased with drug exposure. Furthermore, Wnt activation in HT29 and DLD1 cells decreased with celecoxib treatment. Gene expression microarray showed stemness genes, including Lgr5, Oct4, Prominin-1, Prominin-2, CXCR4, E2F8, CDK-2, were downregulated and differentiation genes, including CEACAM5, GDF, ADFP, ICAM1, were upregulated. Our results show that CD133 expression was downregulated by celecoxib through inhibition of the Wnt signaling pathway, which may be lead to cell differentiation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,193.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.