102
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Sodium arsenite-induced cardiotoxicity in rats: protective role of p-coumaric acid, a common dietary polyphenol

, &
Pages 255-262 | Received 31 Aug 2012, Accepted 06 Nov 2012, Published online: 15 Jan 2013
 

Abstract

This study was performed to investigate the ameliorative role of p-coumaric acid against sodium arsenite-induced cardiotoxicity in rats. Sodium arsenite (5 mg/kg/b.wt) was orally administered once a day for 30 days to the animals to induce cardiotoxicity. After the experimental period, cardiotoxicity was assessed by estimating the levels of lipid peroxidation, anti-oxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, total reduced glutathione, protein sulfyhydryl and non-protein sulfhydryl groups) and DNA fragmentation in the cardiac tissue of control and experimental rats. In addition, cardiac tissue specific serum markers (triacylglycerides, total cholesterol, low-density lipoprotein cholesterol and high density lipoprotein cholesterol) in serum and histopathological changes in the cardiac tissue were also evaluated. From the results obtained in our study, sodium arsenite administration to the rats increased lipid peroxidation, DNA fragmentation, triacylglycerides, total cholesterol and low-density lipoprotein cholesterol, whereas antioxidant status and high-density lipoprotein cholesterol were found to be reduced. However, p-coumaric acid (75 and100 mg/kg/b.wt) treatment orally once per day for 30 days, immediately before a daily administration of sodium arsenite protected the abnormal biochemical abnormalities observed in the cardiac tissue of sodium arsenite treated rats as evidenced by the cardiac histopathology. For comparison purpose, a standard antioxidant vitamin C (100 mg/kg/b.wt) was used. In conclusion, this study concluded that p-coumaric acid could be a promising candidate for protecting the sodium arsenite-induced cardiotoxicity in rats through its antioxidant character.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.