1,529
Views
239
CrossRef citations to date
0
Altmetric
Original Article

Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae – state of the art and knowledge gaps

&
Pages 605-630 | Received 18 Jan 2013, Accepted 19 May 2013, Published online: 19 Jun 2013
 

Abstract

Nanotechnology has revolutionised many areas of modern life, technology and research, which is reflected in the steadily increasing global demand for and consumption of engineered nanomaterials and the inevitable increase of their release into the environment by human activity. The overall long-term impact of engineered nanomaterials on ecosystems is still unknown. Various inorganic nanoparticles have been found to exhibit bactericidal properties and cause growth inhibition in model aquatic microalgae, but the mechanisms of toxicity are not yet fully understood. The causal link between particle properties and biological effects or reactive oxygen species generation is not well established and represents the most eminent quest of nanoecotoxicological investigation. In this review, the current mechanistic understanding of the toxicity of inorganic metal and metal oxide engineered nanomaterials towards bacterial and aquatic microalgal model organisms based on the paradigm of oxidative stress is presented along with a detailed compilation of available literature on the major toxicity factors and research methods.

Acknowledgement

The authors extend many thanks to the anonymous reviewers for their valuable feedback that helped improve this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.