1,263
Views
14
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

A comparative study of short chain and long chain mercapto acids used in biosensor fabrication: A VEGF-R1-based immunosensor as a model system

&
Pages 462-470 | Received 07 Jul 2014, Accepted 01 Sep 2014, Published online: 07 Oct 2014

Figures & data

Figure 1. Electrochemical characterization of the biosensor [(A) Cyclic voltammograms of VEGF-R1 immobilization on gold electrode modified with MUA, -◊-◊-:Bare Au, -+-+-: Au/MUA, -•-•-:Au/MUA/EDC-NHS, -□-□-: Au/MUA/EDC-NHS/VEGF-R1, -Δ-Δ-: Au/MUA/EDC-NHS/VEGF-R1/BSA. (B) Electrochemical impedance spectra of VEGF-R1 immobilization steps, -+-+-: Bare Au, -•-•-: Au/MUA, -□-□-: Au/MUA/EDC-NHS, -◊-◊-: Au/MUA/EDC-NHS/VEGF-R1, -Δ-Δ-: Au/MUA/EDC-NHS/VEGF-R1/].

Figure 1. Electrochemical characterization of the biosensor [(A) Cyclic voltammograms of VEGF-R1 immobilization on gold electrode modified with MUA, -◊-◊-:Bare Au, -+-+-: Au/MUA, -•-•-:Au/MUA/EDC-NHS, -□-□-: Au/MUA/EDC-NHS/VEGF-R1, -Δ-Δ-: Au/MUA/EDC-NHS/VEGF-R1/BSA. (B) Electrochemical impedance spectra of VEGF-R1 immobilization steps, -+-+-: Bare Au, -•-•-: Au/MUA, -□-□-: Au/MUA/EDC-NHS, -◊-◊-: Au/MUA/EDC-NHS/VEGF-R1, -Δ-Δ-: Au/MUA/EDC-NHS/VEGF-R1/].

Figure 2. Optimum incubation period for the formation of SAM MUA [Electrochemical impedance spectra obtained for different MUA incubation periods, -•-•-: 1 h, -□-□-: 2 h, -+-+-: 3 h, -♦-♦-:5 h].

Figure 2. Optimum incubation period for the formation of SAM MUA [Electrochemical impedance spectra obtained for different MUA incubation periods, -•-•-: 1 h, -□-□-: 2 h, -+-+-: 3 h, -♦-♦-:5 h].

Figure 3. The effect of concentration ratio of EDC/NHS couple [Electrochemical impedance spectra obtained for different EDC/NHS ratios, -Δ-Δ-: 0.004 mM EDC/0.001 mM NHS, -□-□-: 0.04 mM EDC/0.01 mM NHS, -◊-◊-: 0.4 mM EDC/0.1 NHS, -+-+-: 4 mM EDC/1 mM NHS].

Figure 3. The effect of concentration ratio of EDC/NHS couple [Electrochemical impedance spectra obtained for different EDC/NHS ratios, -Δ-Δ-: 0.004 mM EDC/0.001 mM NHS, -□-□-: 0.04 mM EDC/0.01 mM NHS, -◊-◊-: 0.4 mM EDC/0.1 NHS, -+-+-: 4 mM EDC/1 mM NHS].

Figure 4. The effect of VEGF-R1 incubation period on immobilization performance [Electrochemical impedance spectra obtained for different VEGF-R1 incubation periods, -+-+-: 1 h, -◊-◊-:2 h, -Δ-Δ-: 3 h, -□-□-: 4 h].

Figure 4. The effect of VEGF-R1 incubation period on immobilization performance [Electrochemical impedance spectra obtained for different VEGF-R1 incubation periods, -+-+-: 1 h, -◊-◊-:2 h, -Δ-Δ-: 3 h, -□-□-: 4 h].

Figure 5. The effect of VEGF-R1 amount on immobilization performance [Electrochemical impedance spectra obtained for different VEGF-R1 amounts, -o-o-:500 μg/mL, -◊-◊-:125 μg/mL, -□-□-: 85 μg/mL, -Δ-Δ-: 65 μg/mL].

Figure 5. The effect of VEGF-R1 amount on immobilization performance [Electrochemical impedance spectra obtained for different VEGF-R1 amounts, -o-o-:500 μg/mL, -◊-◊-:125 μg/mL, -□-□-: 85 μg/mL, -Δ-Δ-: 65 μg/mL].

Figure 6. Optimum incubation period for the interaction between VEGF-R1 and VEGF [-+-+-: 1 h, -◊-◊-:2 h, -□-□-: 3 h].

Figure 6. Optimum incubation period for the interaction between VEGF-R1 and VEGF [-+-+-: 1 h, -◊-◊-:2 h, -□-□-: 3 h].

Figure 7. Cyclic voltammograms (A) and impedance spectra (B) obtained for different concentrations of VEGF.

Figure 7. Cyclic voltammograms (A) and impedance spectra (B) obtained for different concentrations of VEGF.

Figure 8. VEGF calibration curve related with the proposed biosensor based MUA.

Figure 8. VEGF calibration curve related with the proposed biosensor based MUA.

Table I. The results for Kramers–Kronig transforms, reproducibility, and the sample analysis.

Figure 9. The plots of Kramers-Kronig transforms performed on different layers of the proposed biosensor. [The turquoise lines show Kramers-Kronig Transforms performed and fitted on the experimental data and the black lines show experimental results. -■-■-:Bare Au electrode -•-•-:Au/MUA/EDC-NHS, -♦-♦-: Au/MUA/EDC-NHS/VEGF-R1, -▲-▲-: Au/MUA/EDC-NHS/VEGF-R1/BSA, inserted plot:Au/MUA].

Figure 9. The plots of Kramers-Kronig transforms performed on different layers of the proposed biosensor. [The turquoise lines show Kramers-Kronig Transforms performed and fitted on the experimental data and the black lines show experimental results. -■-■-:Bare Au electrode -•-•-:Au/MUA/EDC-NHS, -♦-♦-: Au/MUA/EDC-NHS/VEGF-R1, -▲-▲-: Au/MUA/EDC-NHS/VEGF-R1/BSA, inserted plot:Au/MUA].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.