241
Views
12
CrossRef citations to date
0
Altmetric
INNER EAR

Mutation analysis of the Cx26, Cx30, and Cx31 genes in autosomal recessive nonsyndromic hearing impairment

, MD, , &
Pages 1056-1062 | Received 31 Oct 2007, Published online: 08 Jul 2009
 

Abstract

Conclusion. Biallelic Cx26 mutations are the most common cause of autosomal recessive nonsyndromic hearing impairment (ARNHI) in Switzerland. Mutations in Cx30 and 31, digenic mutations as well as large deletions/duplications, are unlikely to be a major cause of hearing loss in Swiss patients with ARNHI. Multiplex ligation-dependent probe amplification (MLPA) is a highly accurate screening method for detection of c.del(GJB6-D13S1830). Objectives. The intent of this study was to investigate the prevalence of the point and digenic mutations including large deletions and duplications in the Cx26, 30, and 31 genes in a Swiss patient cohort with ARNHI and cochlear implant. Patients and methods. The coding regions of Cx26, 30, and 31 were sequenced in 32 patients. Large deletions/duplications were assessed by MLPA. Results. In one patient digenic heterozygous mutations involving Cx26 (c.35delG) and Cx30 (c.del(GJB6-D13S1830)) were identified. Biallelic Cx26 mutations were detected in 31%. One putative mutation (c.94C>T) was found in Cx31. MLPA analysis did not reveal any additional deletion or duplication in all three Cx genes, except for the heterozygous c.del(GJB6-D13S1830) deletion.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 226.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.