122
Views
3
CrossRef citations to date
0
Altmetric
Review article

Stress and anxiety in schizophrenia and depression: glucocorticoids, corticotropin-releasing hormone and synapse regression

Pages 995-1002 | Received 04 Aug 2008, Published online: 06 Jul 2009
 

Abstract

Stress during childhood and adolescence has implications for the extent of depression and psychotic disorders in maturity. Stressful events lead to the regression of synapses with the loss of synaptic spines and in some cases whole dendrites of pyramidal neurons in the prefrontal cortex, a process that leads to the malfunctioning of neural networks in the neocortex. Such stress often shows concomitant increases in the activity of the hypothalamic–pituitary–adrenal system, with a consequent elevated release of glucocorticoids such as cortisol as well as of corticotropin-releasing hormone (CRH) from neurons. It is very likely that it is these hormones, acting on neuronal and astrocyte glucocorticoid receptors (GRs) and CRH receptors, respectively, that are responsible for the regression of synapses. The mechanism of such regression involves the loss of synaptic spines, the stability of which is under the direct control of the activity of N-methyl-d-aspartate (NMDA) receptors on the spines. Glutamate activates NMDA receptors, which then, through parallel pathways, control the extent in the spine of the cytoskeletal protein F-actin and so spine stability and growth. Both GR and CRH receptors in the spines can modulate NMDA receptors, reducing their activation by glutamate and hence spine stability. In contrast, glucocorticoids, probably acting on nerve terminal and astrocyte GRs, can release glutamate, so promoting NMDA receptor activation. It is suggested that spine stability is under dual control by glucocorticoids and CRH, released during stress to change the stability of synaptic spines, leading to the malfunctioning of cortical neural networks that are involved in depression and psychoses.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.