127
Views
7
CrossRef citations to date
0
Altmetric
Section A

Stochastic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters

&
Pages 892-904 | Received 12 Dec 2008, Accepted 17 Feb 2010, Published online: 16 Dec 2010
 

Abstract

In this paper, the global robust stability of uncertain recurrent neural networks with Markovian jumping parameters which are represented by the Takagi–Sugeno fuzzy model is considered. A novel linear matrix inequality-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy recurrent neural networks with Markovian jumping parameters. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in Arik [On the global asymptotic stability of delayed cellular neural networks, IEEE Trans. Circ. Syst. I 47 (2000), pp. 571–574], Cao [Global stability conditions for delayed CNNs, IEEE Trans. Circ. Syst. I 48 (2001), pp. 1330–1333] and Lou and Cui [Delay-dependent stochastic stability of delayed Hopfield neural networks with Markovian jump parameters, J. Math. Anal. Appl. 328 (2007), pp. 316–326] to show the effectiveness and conservativeness.

2000 AMS Subject Classifications :

Acknowledgements

The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions. The work was supported by NBHM project grant No.48/1/2007/-RD-II/7446.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,129.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.