171
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Output feedback sliding mode control for a linear multi-compartment lung mechanics system

, &
Pages 2044-2055 | Received 09 Jun 2013, Accepted 23 Feb 2014, Published online: 25 Mar 2014
 

Abstract

In this paper, we develop a sliding mode control architecture to control lung volume and minute ventilation in the presence of modelling system uncertainties. Since the applied input pressure to the lungs is, in general, nonnegative and cannot be arbitrarily large, as not to damage the lungs, a sliding mode control with bounded nonnegative control inputs is proposed. The controller only uses output information (i.e., the total volume of the lungs) and automatically adjusts the applied input pressure so that the system is able to track a given reference signal in the presence of parameter uncertainty (i.e., modelling uncertainty of the lung resistances and lung compliances) and system disturbances. Controllers for both matched and unmatched uncertainties are presented. Specifically, a Lyapunov-based approach is presented for the stability analysis of the system and the proposed control framework is applied to a two-compartment lung model to show the efficacy of the proposed control method.

Additional information

Funding

This publication was made possible by NPRP [grant number 4-187-2-060] from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.