196
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

BLF-based neural dynamic surface control for stochastic nonlinear systems with time delays and full-state constraints

ORCID Icon
Pages 982-998 | Received 18 Jan 2022, Accepted 24 Feb 2023, Published online: 21 Apr 2023
 

Abstract

This paper investigates the adaptive neural tracking control problem for a class of stochastic nonlinear systems with time delays and full-state constraints in a unified framework for the first time. The time-delay terms of the controlled systems are compensated by novel Lyapunov–Krasovskii functionals. The asymmetric barrier Lyapunov function (BLF) is adopted to guarantee that the full states are always restricted within prescribed constraints. RBF neural networks are utilised to approximate the lumped unknown functions in the design process. Furthermore, the dynamic surface control (DSC) technique is employed to simplify the process of control design significantly. Stability analysis shows all closed-loop signals are SGUUB, and full-state constraints are not violated. Finally, simulation results confirm the effectiveness of the proposed control scheme.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.