198
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Dexmedetomidine inhibits microglial activation through SNHG14/HMGB1 pathway in spinal cord ischemia-reperfusion injury mice

, , , , &
Pages 77-88 | Received 22 May 2020, Accepted 26 Sep 2020, Published online: 28 Dec 2020
 

Abstract

Objective

Microglial activation is an essential pathological mechanism of spinal cord ischemia-reperfusion injury (SCIRI). Previous studies showed dexmedetomidine (DEX) could alleviate SCIRI while the mechanism was not clear. This study aims to investigate the role of DEX in microglial activation and clarify the underlying mechanism.

Methods

The motion function of mice was quantified using the Basso Mouse Scale for Locomotion. The expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) was determined by qRT-PCR. The expression of high-mobility group box 1 (HMGB1) was measured by western blot. The activation of microglia was evaluated by the expression of ED-1 and the levels of TNF-α and IL-6. The interplay between SNHG14 and HMGB1 was confirmed with RNA pull-down and RIP assay. The stability of HMGB1 was measured by ubiquitination assay and cycloheximide-chase assay.

Results

DEX inhibited microglial activation and down-regulated SNHG14 expression in SCIRI mice and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated primary microglia. Functionally, SNHG14 overexpression reversed the inhibitory effect of DEX on OGD/R-induced microglial activation. Further investigation confirmed that SNHG14 bound to HMGB1, positively regulated HMGB1 expression by enhancing its stability. In addition, the silence of HMGB1 eliminated the pro-activation impact of SNHG14 overexpression on DEX-treated microglia under the OGD/R condition. Finally, in vivo experiments showed SNHG14 overexpression abrogated the therapeutic effect of DEX on SCIRI mice by up-regulating HMGB1.

Conclusion

DEX accelerated HMGB1 degradation via down-regulating SNHG14, thus inhibiting microglial activation in SCIRI mice.

Authors contributions

Ha sen ta na, Lichao Hou, and Kai Jin contributed to the conception of the study;

Ha sen ta na and Min An performed the experiments and wrote the manuscript;

Tianwen Zhang performed the data analysis;

Wuyuner Deni helped perform the analysis with constructive discussions.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.