257
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Pareto-based hybrid genetic simulated annealing algorithm for multi-objective hybrid production line balancing problem considering disassembly and assembly

, , ORCID Icon, , & ORCID Icon
Pages 4809-4830 | Received 09 Jan 2023, Accepted 30 Oct 2023, Published online: 14 Nov 2023
 

ABSTRACT

Most existing studies about line balancing problems mainly focus on disassembly and assembly separately, which rarely integrate these two modes into a system. However, as critical activities in the remanufacturing field, assembly and disassembly share many similarities, such as working tools and processing sequence. Thus, this paper proposes a multi-objective hybrid production line balancing problem with a fixed number of workstations (HPLBP-FNW) considering disassembly and assembly to optimise cycle time, total cost, and workload smoothness simultaneously. And a novel Pareto-based hybrid genetic simulated annealing algorithm (PB-HGSA) is designed to solve it. In PB-HGSA, the two-point crossover and hybrid mutation operator are proposed to produce potential non-dominated solutions (NDSs). Then, a local search method based on a parallel simulated annealing algorithm is designed for providing a depth search around the NDSs to balance the global and local search ability. Numerical results by comparing PB-HGSA with the well-known algorithms verify the effectiveness of PB-HGSA in solving HPLBP-FNW. Moreover, the managerial insights based on a case study are given to inspire enterprise companies to consider hybrid production line in the remanufacturing process, which is beneficial to reduce the cycle time and total cost and improve the service life of the equipment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Data will be made available on request.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China under Project (No. 51705386) and by China Scholarship Council (No. 201606955091).

Notes on contributors

Xiang Sun

Xiang Sun received the B.Eng degree from Huazhong Agricultural University, Wuhan, China, in 2018. He is pursuing the Ph.D. degree at Wuhan University of Technology, Wuhan, China. His current research interests include manufacturing scheduling, machine learning and intelligent optimization algorithms.

Shunsheng Guo

Shunsheng Guo received the B.Sc. degree in Mechanical manufacturing and automation from Huazhong University of Science and Technology, Wuhan, China, in 1984 and the Ph.D. degree in Mechanical Design and Theory from Wuhan University of Technology, Wuhan, China, in 2001. He is currently a Professor with the School of Mechanical and Electronic Engineering, Wuhan, China. His current research interests include manufacturing informatization and intelligent manufacturing.

Jun Guo

Jun Guo received the M.S. degree (2009) and Ph.D. degree (2012) in Mechanical Engineering from Wuhan University of Technology, Wuhan, China. He is currently an Associate Professor with the School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China. His current research interests include production scheduling and optimization.

Baigang Du

Baigang Du received the M.S. degree (2013) and Ph.D. degree (2015) in Mechanical Engineering from Wuhan University of Technology, Wuhan, China. He is currently an Associate Professor with the School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China. His current research interests include manufacturing informatization and optimization modeling.

Zhijie Yang

Zhijie Yang received the M.Eng degree from Wuhan University of Technology, China, in 2015. He is pursuing the Ph.D. at Wuhan University of Technology, Wuhan, China. His current research interests include modern manufacturing integration and information systems.

Kaipu Wang

Kaipu Wang received his Ph.D. degree in the School of Mechanical Science and Engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2022. He was also a visiting scholar in the Department of Industrial Engineering & Innovation Sciences at Eindhoven University of Technology, the Netherlands, in 2021. He is currently an associate research fellow with the School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan, China. His research mainly focuses on industrial engineering, production planning and scheduling, and intelligent optimization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 973.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.