Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 46, 2016 - Issue 4
707
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

1,3-Dipolar cycloadditions of nonstabilized azomethine ylides to planar chalcones via regio- and stereoselective route: A three-component strategy

, &
Pages 293-308 | Received 18 Sep 2015, Published online: 08 Feb 2016
 

ABSTRACT

Simple and efficient strategies toward the synthesis of trisubstituted pyrrolizidines and disubstituted oxazolidine systems by 1,3-dipolar cycloaddition reactions using arylaldehydes and α-amino acids have been developed, followed by a one-pot, three-component strategy. Electron-deficient dipolarophiles, chalcones, were reacted with nonstabilized azomethine ylides derived from arylaldehyde and L-proline in dry dimethyl formamide, leading to substituted pyrrolizidines. The route to substituted oxazolidines involved cycloaddition to the C˭O bond of a second molecule of the aldehyde. The structures and stereochemistry of the cycloadducts were established by infrared (IR), NMR spectroscopy, and single-crystal x-ray crystallographic analyses. Condensed Fukui functions and local electrophilicity indices have been computed to characterize the reactive sites and predict the preferred interactions of azomethine ylides to planar chalcones. The softness-matching indices have been evaluated to determine the regioselectivity of the cycloaddition reactions. The theoretical predictions were found to be in complete agreement with the experimental results, implying that the density functional theory (DFT)-based reactivity indices correctly predict the regioselectivities of 1,3-dipolar cycloadditions of azomethine ylides to planar chalcones. The frontier molecular orbital (FMO) energies, electronic chemical potentials, chemical hardness, chemical softness, and global electrophilicity indices of azomethine ylides have been calculated at the DFT/B3LYP/6-31 + G (d, p) level of theory.

GRAPHICAL ABSTRACT

Acknowledgment

The authors thank the University of Calcutta for providing laboratory and spectroscopic facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 422.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.