Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 29, 1999 - Issue 12
35
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Identification of cytochromes P450 involved in human liver microsomal metabolism of ecabapide, a prokinetic agent

, &
Pages 1273-1282 | Published online: 22 Sep 2008
 

Abstract

1. In vitro studies identified the hepatic cytochrome P450 (CYP) enzyme(s) involved in the major metabolism of ecabapide in human. 2. Ecabapide mainly underwent N-dealkylation to form M1 and 6-hydroxylation of the benzamide moiety to form M6. 3. The rates of formation of the major metabolites M1 and M6 were significantly correlated with CYP3A-selective testosterone 6beta-hydroxylase activities in 14 different human liver microsomes. The formation of both metabolites was markedly decreased by ketoconazole, miconazole or troleandomycin (TAO), CYP3A-selective inhibitors, and also was inhibited by anti-CYP3A antibodies. 4. These results strongly indicate that CYP3A is the predominant isozyme responsible for the major metabolism of ecabapide in human liver microsomes. 5. Marginal inhibition of the formation of M1 and M6 by nifedipine, a substrate of CYP3A with a Ki>100 muM, suggested that nifedipne has a limited potential to inhibit the major metabolic pathways of ecabapide.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.