60
Views
57
CrossRef citations to date
0
Altmetric
Original Articles

INDUCTION OF OXIDATIVE STRESS IN THE TISSUES OF RATS AFTER CHRONIC EXPOSURE TO TCDD, 2,3,4,7,8-PENTACHLORODIBENZOFURAN, AND 3,3',4,4',5-PENTACHLOROBIPHENYL

, , &
Pages 825-842 | Published online: 07 Jan 2011
 

Abstract

The abilities of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), 3,3',4,4',5-pentachlorobiphenyl (PCB126), and mixtures of these xenobiotics (toxic equivalents, TEQs) to induce oxidative stress in hepatic and brain tissues of rats have been investigated after chronic (30 wk) exposure to these congeners. TCDD, PeCDF, PCB126, and TEQs were administered daily to groups of rats at doses that corresponded to their toxic equivalency factors (TEFs), and the biomarkers of oxidative stress, including the production of superoxide anion, lipid peroxidation, and DNA single-strand breaks (SSBs), were determined in hepatic and brain tissues at the end of the exposure period. The three chemicals caused similar dose-dependent increases in the production of superoxide anion, lipid peroxidation, and DNA SSBs, which plateaued at certain dose ranges, followed by secondary increases at the higher dose levels. Similar effects were also produced by the TEQs; however, the dose-dependent increases in the biomarkers of oxidative stress were continuous and never achieved plateau levels. Except for PCB126, where statistical analyses revealed greater productions of superoxide anion and lipid peroxidation in brain tissues as compared with hepatic tissues, no significant differences were revealed between the two tissues in response to the other xenobiotics or the TEQs. Nonsignificant differences were also revealed when comparing the effects induced by the TEQs with those induced by the individual chemicals.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.