28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy generation and Arrhenius activation energy mechanisms in EMHD radiative Carreau nanofluid flow due to Brownian motion and thermophoresis with infinite shear rate viscosity: solar energy application and regression analysis

Article: 2334401 | Received 30 Oct 2023, Accepted 20 Mar 2024, Published online: 29 Apr 2024
 

Abstract

This research is devoted to analyzing the radiative electro-magnetohydrodynamic (EMHD) Carreau nanofluid flow, emphasising entropy generation and activation energy under unique conditions, specifically, with infinite shear rate viscosity and binary chemical reactions occurring over a nonlinear stretching sheet. Also, this innovative nanofluid model explicitly includes the vital role of Brownian motion and thermophoresis phenomenon, which are significant factors governing the movement and distribution of nanoparticles in the base fluid. A binary chemical reaction has also been taken in this study since it affects the mass transfer rates between different species present in the nanofluid. The ODEs were solved by using the bvp4c routine to effectively tackle momentum, temperature, and concentration equations. It is noted that velocity distribution increases with enhancement in the Weissenberg parameter, whereas the reverse trend is seen on the temperature profile. With an escalation of the viscosity ratio parameter, the velocity profile increases. Further, multiple linear regression has been utilised to statistically scrutinised the effect of pertinent parameters on skin friction coefficient, heat transfer rate, and Sherwood number by considering 64 sets of values of Nr in the range [0.3,0.6]. Nb & Nt in the range [0.1, 0.4] & [0.2, 0.3], respectively, to obtain the regression model.

Acknowledgements

I express gratitude to the reviewers and the Editor-in-Chief for their insightful comments and valuable suggestions. Their constructive input has significantly improved the paper’s quality, rendering it well-suited for publication in this esteemed journal.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 275.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.