128
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Altered expression of cyclooxygenase-2, 12-lipoxygenase, inducible nitric oxide synthase-2 and surfactant protein D in lungs of patients with pulmonary injury caused by sulfur mustard

, , &
Pages 257-263 | Received 15 Jan 2016, Accepted 07 Feb 2018, Published online: 14 Mar 2018
 

Abstract

Context: Sulfur mustard (SM) is a strong alkylating toxicant that targets different organs, particularly human lung tissue. Change in genes expression is one of the molecular mechanisms of SM toxicity in damaged tissue.

Objective: The purpose of this investigation is to characterize the expression of cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LO), inducible nitric oxide synthase 2 (iNOS2), and surfactant protein D (SFTPD) in lungs of patients who exposed to SM.

Methods: Lung biopsies were provided from SM-exposed patients (n = 6) and controls (n = 5). Total RNA were extracted from all specimens and then cDNA was synthesized for each sample. Changes in gene expression were measured using RT2 Profiler ™PCR Array.

Results: Pulmonary function tests revealed more obstructive and restrictive spirometric patterns among patients compared to the control group. Expression of COX-2 and 12-LO in the lung of patients was increased by 6.2555 (p = 0.004) and 6.2379-folds (p = 0.002), respectively. In contrast, expression of SF-D and iNOS genes was reduced by 8.5869-fold (p = 0.005) and 2.4466-folds (p = 0.011), respectively.

Conclusions: Mustard lungs were associated with overexpression of COX-2 and 12-LO, which are responsible for inflammation, overproduction of free radicals and oxidative stress. Downregulation of iNOS2 and SF-D are probably the reason for lung disease and dysfunction among these patients. Therefore, the expression of these genes could be an important, routine part of the management of such patients.

Acknowledgements

The authors would like to acknowledge Dr. Ali Qazvini and Dr. Ensieh Vahedi for tissue collection and bronchoscopy; Dr. Elahe Orang for English editing the manuscript, and Mr. Shahram Parvin for his assistance in management of laboratory equipment’s. This work was extracted from a part of PhD thesis of Mr. Eisa Tahmasbpour, which was supported by a grant provided from the Chemical Injury Research Center at Baqiatallah University of Medical Science, Tehran-Iran.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.