402
Views
60
CrossRef citations to date
0
Altmetric
Review Article

Nanoformulations and their mode of action in insects: a review of biological interactions

ORCID Icon & ORCID Icon
Pages 1-11 | Received 27 Mar 2018, Accepted 13 Sep 2018, Published online: 13 Feb 2019
 

Abstract

While nanoparticles (NPs) can be used as insecticides by themselves, they can also be carriers for insecticidal chemicals. Existing literature suggests that the smaller the NP size, the greater the toxicity and penetration into the insect’s body. Nonetheless, there is a lack of literature pertaining to the mode of action within insects. This review article summarizes the currently available entomological studies on the mechanisms of NP–insect interactions. Externally, NPs affect pigmentation and integrity of the cuticle, while internally they induce immune responses and alter gene expression leading to altered protein, lipid, and carbohydrate metabolism along with cellular toxicity that impairs development and reproduction of the insect. Consequently, insects are incapacitated due to the disruption of the nutrient intake, production of reactive oxygen species and altered biochemical activity while some NPs can promote growth and development as well as diminish the effects of nontarget toxicity.

Disclosure statement

The authors declare no conflict of interest. This review article did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.