212
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

SILICON EFFECTS ON THE PARTITIONING OF MINERAL ELEMENTS IN SOYBEAN SEEDLINGS UNDER DROUGHT AND ULTRAVIOLET-B RADIATION

, , , &
Pages 828-836 | Received 07 Jul 2011, Accepted 03 Jan 2012, Published online: 01 Apr 2014
 

Abstract

The aim of this study was to investigate the effect of silicon (Si) on soybean seedlings under (combined) drought and ultraviolet-B (UV-B) radiation stresses. Specifically, we determined dry matter accumulation and partitioning of the mineral elements in different organs of soybean seedlings using the inductively coupled plasma mass spectrometry (ICP-MS). The amount of dry matter accumulated in root, stem, and leaf of seedlings treated with (combined) drought and UV-B radiation stresses were lower than that of the control. Also, the content of macroelements in seedlings under the combined stress was lower than in those under control conditions. Changes in the contents of microelements varied according to the intensity of drought, UV-B radiation, and the organs of soybean. The relationship between the contents of mineral elements and the accumulation of dry matter also varied similarly. These results demonstrated that drought and UV-B radiation induced an alteration in the distribution of mineral elements in root, stem and leaf, leading to decreases in dry matter accumulation and inhibition of soybean growth.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.