592
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Collagen-coated polycaprolactone microparticles as a controlled drug delivery system

, &
Pages 298-306 | Received 02 Sep 2007, Accepted 06 Feb 2008, Published online: 08 Oct 2008
 

Abstract

Objective: Polycaprolactone (PCL) microparticles coated with acetylated collagen have been assessed for use as a controlled drug delivery system.

Method: The surface morphology, drug encapsulation and release profile of PCL microparticles and collagen-coated PCL microparticles containing doxycycline hydrochloride (DH) have been investigated in order to develop a controlled release system which would in addition act as a scaffold for cell attachment. PCL microparticles were prepared by emulsion solvent evaporation technique and loaded with DH. Since the encapsulation was found to be low, PCL microparticles were coated with acetylated collagen containing DH, to increase the drug availability. Collagen was modified by acetylation to shift its isoelectric point and to have acetylated collagen solution at pH 7.0. The microparticles were characterized using a scanning electron microscope (SEM) and the in vitro drug release profile was determined using HPLC.

Results: Uniform sized (∼1000 nm) PCL microparticles were prepared using 4% PVA in the external water phase. Acetylated collagen at pH 7.0 was coated onto the PCL microparticles. This resulted in microparticles of uniform size at neutral pH. PCL acts as a support for collagen which acts as a scaffold for cell attachment. In vitro drug release studies show that collagen-coated PCL microparticle is a promising candidate for controlled drug delivery system having release duration of over 10 days. In vitro fibroblast culture studies reveal that collagen is a good substrate for cell attachment and would provide a stable environment for cell proliferation and regeneration. Thus, this system would be ideal for a short-term drug delivery to create an aseptic environment where cells can adhere and proliferate to regenerate the site.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.