193
Views
11
CrossRef citations to date
0
Altmetric
Original

Development of biodegradable drug releasing polymeric cardiovascular stents and in vitro evaluation

, , &
Pages 501-512 | Received 01 Jul 2008, Accepted 09 Sep 2008, Published online: 21 Aug 2009
 

Abstract

Prednisolone acetate (PA) is insoluble in water and was chosen as a model drug for its anti-inflammatory/anti-proliferative functions. PA is incorporated into the film-based polymeric biodegradable stents to provide controlled local release of the drug during the mechanical support phase. Stent formulations were 3 mm in diameter with lengths of 150 mm. The polymer wall thickness was 145.0 ± 4.0 µm for microsphere-containing PLGA 75 : 25 stents. The ATR-FTIR spectra showed biodegradable stent surfaces were free of drug and microspheres. Incorporation of PA into the stents increased the surface area when compared to empty and microsphere-incorporated stents. PA release from the stents containing chitosan microspheres was slower than the PA-only incorporated stents. The drug release from the stents coated with microsphere-containing PLGA 75 : 25 solutions was determined to be the slowest one (19.1% cumulative PA released in 32 days). The stents formulated with PLGA 75 : 25 polymers were considered to be more promising due to their suitable mechanical properties and controlled release of the drug.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.