249
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Improvement of ascorbic acid delivery into human skin via hyaluronic acid-coated niosomes

&
Pages 552-562 | Received 15 Feb 2022, Accepted 10 Oct 2022, Published online: 27 Oct 2022
 

Abstract

Hyaluronic acid (HA) as a covering agent was incorporated into the ascorbic acid (AA)-niosomes to improve the performance of AA delivery systems into the skin. The preparation method: Thin film hydration. Characterisation tests: Field emission scanning electron microscopy, fourier transform infra-red spectroscopy, dynamic light scattering, UV-Visible, zeta potential, Franz diffusion cell, and flowcytometry. The niosomes with 10% w/w HA possessed the largest mean particle diameter of 341.0 ± 48.09 nm with PDI value of 0.29 ± 0.05, and the lowest zeta potential of −38.70 ± 0.27 mv. The drug encapsulation efficiency of this sample was 56.55 ± 0.99%, and in-vitro drug release test showed AA released in two slow and fast phases. Moreover, the highest amount of drug penetration and accumulation was related to this sample, recorded 116.55 ± 7.54 and 134.8 ± 10.04 µg/cm2, respectively. Niosomes coated with 10% w/w HA showed the greatest potential for improving the antioxidant activity of AA penetration into the skin.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.